
Distributed community detection in complex
networks using synthetic coordinates

H. Papadakis 1, C. Panagiotakis 2, P. Fragopoulou 1 ‡
1 Department of Informatics Engineering, Technological Educational Institute
of Crete, 71004 Heraklion, Crete, Greece
2 Department of Business Administration, Technological Educational Institute
of Crete, 72100 Agios Nikolaos, Crete, Greece

E-mail: adanar@ie.teicrete.gr, cpanag@staff.teicrete.gr,
fragopou@ics.forth.gr

Abstract. Various applications like finding web communities, detecting the
structure of social networks, or even analyzing a graph’s structure to uncover
Internet attacks are just some of the applications for which community
detection is important. In this paper, we propose an algorithm that finds the
entire community structure of a network, based on local interactions between
neighboring nodes and on an unsupervised distributed hierarchical clustering
algorithm. The novelty of the proposed approach, named SCCD (to stand for
Synthetic Coordinate Community Detection), is the fact that the algorithm
is based on the use of Vivaldi synthetic network coordinates computed by
a distributed algorithm. The current paper not only presents an efficient
distributed community finding algorithm, but also demonstrates that synthetic
network coordinates could be used to derive efficient solutions to a variety of
problems. Experimental results and comparisons with other methods from
the literature are presented for a variety of benchmark graphs with known
community structure, derived by varying a number of graph parameters and real
dataset graphs. The experimental results and comparisons to existing methods
with similar computation cost on real and synthetic data sets demonstrate the
high performance and robustness of the proposed scheme.

Random graphs, networks; Clustering techniques; Critical phenomena of socio-
economic systems; Socio-economic networks

1. Introduction

Networks in various application domains present an internal structure, where nodes
form groups of tightly connected components which are more loosely connected to
the rest of the network. These components are mostly known as communities,

‡ P. Fragopoulou is also with the Foundation for Research and Technology-Hellas, Institute of
Computer Science, 70013 Heraklion, Crete, Greece.

Distributed community detection in complex networks using synthetic coordinates2

clusters, groups, or modules, the first two terms interchangeably used in the rest
of this paper. Uncovering the community structure of a network is a fundamental
problem in complex networks which presents many variations. With the advent of
Web 2.0 technology, came along the emerging need to analyze network structures
like web communities, social network relations, and in general user’s collective
activities. The newly emerging applications came along with a different set of
parameters and demands due to the enormous data size, rendering prohibitive the
static manipulation of data and raising the demand for flexible solutions.

Several attempts have been made to provide a formal definition to the
generally described “community finding” concept, providing different approaches.
Some of them aim at detecting the so-called, strong communities, groups of nodes
for which each node has more edges to nodes of the same community than to
nodes outside the community [1]. Others aim at detecting weak communities,
which is defined as a subgraph in which the sum of all node degrees within the
community is larger than the sum of all node degrees towards the rest of the
graph [2]. Variations also appear in the method used to identify communities:
Some algorithms follow an iterative approach starting by characterizing either
the entire network, or each individual node as community, and splitting [3, 4, 5]
or merging [2] communities respectively, producing a hierarchical tree of nested
communities, called dendrogram. Several researchers aim to find the entire
hierarchical community dendrogram [3, 4] while others wish to identify only the
optimal community partition [1]. More recently used approaches aim to identify
the community surrounding one or more seed nodes [6]. Some researchers aim at
discovering distinct (non-overlapping) communities, while others allow for overlaps
between communities [7].

In this paper we propose SCCD (ta stand for Synthetic Coordinate
Community Detection), an algorithm that identifies the entire community
structure of a network based on interactions between neighboring nodes. In the
core of our proposal lies the spring metaphor which inspired the Vivaldi synthetic
network coordinate algorithm [8]. The algorithm comprises two main phases. First,
each node selects a “local” set containing mostly nodes of the same community, and
a “foreign” set containing mostly nodes of different communities. As the algorithm
evolves, and the springs connecting local and foreign nodes are tightened and
relaxed, nodes of the same community pull each other close together, while nodes
of different communities push each other further away. Given that the initial
selection of local and foreign sets is “mostly” correct, nodes of the same community
eventually gravitate to the same area in space, while nodes of different communities
are placed further away. In other words nodes belonging to the same community
will form natural clusters in space. In the second phase of the algorithm, a
distributed hierarchical clustering algorithm has been proposed to automatically

Distributed community detection in complex networks using synthetic coordinates3

identify the natural communities formed in space. Extensive experiments on
several benchmark graphs with known community structure indicate that our
algorithm is highly accurate in identifying community membership of nodes.

A first version of our algorithm was presented in [9]. The algorithm presented
in this paper is a heavily modified and improved version. A new simpler and
more accurate algorithm termination mechanism has been introduced. More
importantly, the algorithm can now dynamically make an effort to correct the
“foreign” and “local” sets as we shall see later on, increasing the obtained accuracy.
Finally, we added an optional third phase in the algorithm, which allows for a user
defined value on the number of communities requested. As far as the experimental
evaluation is concerned, we performed experiments on real world graphs, in
addition to the benchmark graphs. In particular, we performed experiments using
new benchmark graphs of diverse community sizes and node degrees. Finally, we
compared our algorithm based on a new accuracy metric, for a total of two metrics
to evaluate performance on benchmark graphs.

The remaining of the paper is organized as follows: Section 2 presents an
overview of some of the methods developed over the years for community detection
in networks. Our distributed community detection algorithm is presented and
analyzed in Section 3. Section 4 describes the experimental framework and
comparison results with other known algorithms on a number of benchmark graphs.
Finally, we conclude in Section 6 with some directions for future research.

2. Related Work

Below we review some of the known methods for community detection and give
insight on the approach they follow. For the interested reader, two comprehensive
and relatively recent surveys covering the latest developments in the field can be
found in [10, 11]. While the first algorithms for the problem used the agglomerative
approach trying to derive an optimal community partition by merging or splitting
other communities, recent efforts concentrate on the derivation of algorithms based
exclusively on local interaction between nodes. A community surrounding a seed
node is identified by progressively adding nodes and expanding a small community.

One of the most known community finding algorithms was developed by
Girvan an Newman [3, 4]. This algorithm iteratively removes edges participating
in many shortest paths between nodes (indicating bridges), connecting nodes in
different communities. By gradually removing edges, the graph is split and its
hierarchical community structure is revealed. The algorithm is computationally
intensive because following the removal of an edge, the shortest paths between all
pairs of nodes have to be recalculated. However, it reveals not only individual
communities, but the entire hierarchical community dendrogram of the graph. In

Distributed community detection in complex networks using synthetic coordinates4

[5], a centralized method for decomposing a social network into an optimal number
of hierarchical subgroups has been proposed. With a perfect hierarchical subgroup
defined as one in which every member is automorphically equivalent to each other,
the method uses the REGGE algorithm to measure the similarities among nodes
and applies the k-means method to group the nodes that have congruent profiles
of dissimilarities with other nodes into various numbers of hierarchical subgroups.
The best number of clusters is determined by minimizing the intra-cluster variance
of dissimilarity subject to the constraint that the improvement in going to more
clusters is better than a network whose n nodes are maximally dispersed in the
n-dimensional space would achieve.

In a different approach, the algorithm presented in [2], named CiBC, starts by
assuming that each node is a different community, and merges closely connected
communities. This algorithm is less intensive computationally since it starts by
manipulating individual nodes rather than the entire graph.

The authors of [6] introduce a local methodology for community detection,
named Bridge Bounding. The algorithm can identify individual communities
starting at seed nodes. It initiates community detection from a seed node
and progressively expands a community trying to identify bridges. An edge is
characterized as a bridge by computing a function related to the edge clustering
coefficient. The edge clustering coefficient is calculated for each edge, looking
at the edge’s neighborhood, and edges are characterized as bridges depending on
wether their clustering coefficient exceeds a threshold. The method is local, has
low complexity and allows the flexibility to detect individual communities, albeit
less accurately. Additionally, the entire community structure of a network can be
uncovered starting the algorithms at various unassigned seed nodes, till all nodes
have been assigned to a community.

In [12], a local partitioning algorithm using a variation of PageRank with a
specified starting distribution, which allows to find such a cut in time proportional
to its size. A PageRank vector is a weighted sum of the probability distributions
obtained by taking a sequence of random walk steps starting from a specified
initial distribution. The cut can be found by performing a sweep over the
PageRank vector, which involves examining the vertices of the graph in an order
determined by the PageRank vector, and computing the conductance of each set
produced by this order. In [13], three distributed community detection approaches
based on Simple, K-Clique, and Modularity metrics, that can approximate their
corresponding centralized methods up to 90% accuracy.

Other community finding methods of interest involve [1] in which the problem
is regarded as a maximum flow problem and edges of maximum flow are identified
to separate communities from the rest of the graph. In clique percolation [14, 15]
a complete subgraph of k nodes (k-clique) is rolled over the network through other

Distributed community detection in complex networks using synthetic coordinates5

cliques with k − 1 common nodes. This way a set of nodes can be reached, which
is identified as a community. A method based on voltage drops across networks
and the physics kirchhoff equations is presented in [16]. A mathematical Markov
stochastic flow formulation method known as MCL is presented [17], and a local
community finding method in [18], just to mention a few.

We will now describe the four state-of-the-art algorithms that we compare
our approach with, in the experimental evaluation section. An exceptionally
interesting method for community detection was developed by Lancichinetti et
al. and appears in [7]. Although most previous approaches identify distinct (non-
overlapping) communities, this algorithm is developed based on the observation
that network communities may have overlaps, and thus, algorithms should allow
for the identification of overlapping communities. Based on this principle, a local
algorithm is devised developing a community from a starting node and expanding
around it based on a fitness measure. This fitness function depends on the number
of inter- and intra-community edges and a tunable parameter α. Starting at a node,
at each iteration, the community is either expanded by a neighboring node that
increases the community fitness, or shrinks by omitting a previously included node,
if this action results in higher fitness for the resulting community. The algorithm
stops when the insertion of any neighboring node would lower the fitness of the
community. This algorithm is local, and able to identify individual communities.
The entire overlapping and hierarchical structure of complex networks can be found
by initiating the algorithm at various unassigned nodes.

Another efficient algorithm is the one described by Chen et al. in [19]. The
algorithm follows a top down approach where the process starts with the entire
graph and sequentially removes inter-community links (bridges) until either the
graph is partitioned or its density exceeds a certain desired threshold. If a graph
is partitioned, the process is continued recursively on its two parts. In each step,
the algorithm removes the link between two nodes with the smallest number of
common neighbors. The density of a graph is defined as the number of edges
in the graph divided by the number of edges of a complete graph with the same
number of nodes.

The algorithm described by Blondel et al. in [20] follows a bottom-up
approach. Each node in the graph comprises a singleton community. Two
communities are merged into one if the resulting community has larger modularity
value [21] than both the initial ones. This is a rapid and accurate algorithm which
detects all communities in the graph. In suffers however, in the sense, from the
fact that during its execution, it constantly requires the knowledge of some global
information of the graph, namely the number of its edges (which changes during
the execution since the algorithm modifies the graph), limiting, to a certain extend,
its distributed nature.

Distributed community detection in complex networks using synthetic coordinates6

Finally, we compare our algorithm with the one described in [22], called
Infomap. This algorithm transforms the problem of community detection into
efficiently compressing the structure of the graph, so that one can recover almost
the entire structure from the compressed form. This is achieved by minimizing
a function that expresses the tradeoff between compression factor and loss of
information (difference between the original graph and the reconstructed graph).

Most of the approaches found it the literature are centralized, heuristic without
a global optimality criterion. On the contrary, in this paper, we have proposed a
fully distributed method that solves the community detection problem. In addition,
another strong point of the proposed method is that according to the experimental
results and comparisons to existing methods on real and synthetic data sets, the
proposed method clearly outperforms the other methods.

3. SCCD Community Finding

The proposed local community finding algorithm comprises the following steps:

• The position estimation algorithm, which is a distributed algorithm inspired
by Vivaldi [8].

• The community detection algorithm using hierarchical clustering.

3.1. Vivaldi synthetic coordinates

Network coordinate systems predict latencies between network nodes, without
the need of explicit measurements using probe queries. These algorithms assign
synthetic coordinates to nodes, so that the distance between two nodes’ coordinates
provides an accurate latency prediction between them. This technique provides to
applications the ability to predict round trip time with less measurement overhead
than probing.

Vivaldi is a fully decentralized, light-weight, adaptive network coordinate
algorithm that was initially developed to predict Internet latencies with low error.
Vivaldi uses the Euclidian coordinate system (in n-dimensional space, where n is a
parameter) and the associated distance function. Conceptually, Vivaldi simulates
a network of physical springs, placing imaginary springs between pairs of network
nodes.

Let G = (V,E) denote the given graph comprising a set V of nodes together
with a set E of edges. Each node x ∈ V participating in Vivaldi maintains its own
coordinates p(x) ∈ �n (the position of node x that is a point in the n-dimensional
space). The Vivaldi method consists of the following steps:

• Initially, all node coordinates are set at the origin.

Distributed community detection in complex networks using synthetic coordinates7

• Periodically, each node communicates with another node (randomly selected
among a small set nodes of nodes known to it). Each time a node
communicates with another node, it measures its latency and learns that
node’s coordinates. Subsequently, the node allows itself to be moved a little by
the corresponding imaginary spring connecting them (i.e the positions change
a little so as the Euclidian distance of the nodes to better match the latency
distance).

• When Vivaldi converges, any two nodes’ Euclidian distance will match their
latency distance, even though those nodes may never had any communication.

Unlike other centralized network coordinate approaches, in Vivaldi each node only
maintains knowledge for a handful of other nodes, making it completely distributed.
Each node computes and continuously adjusts its coordinates based on measured
latencies to a handful of other nodes. Finally, Vivaldi does not require any fixed
infrastructure as for example landmark nodes.

3.2. The position estimation algorithm

As we mentioned, in the core of our proposal lies the spring metaphor which
inspired the Vivaldi algorithm. Vivaldi uses the spring relaxation metaphor to
position the nodes in a virtual space (the n-dimensional Euclidean space), so as
the Euclidean distance of any two node positions approximates the actual distance
between those nodes. In the original application of Vivaldi, the actual distances
were the latencies between Internet hosts. Our algorithm is based on the idea that
by providing our own, appropriate, definition of distance between nodes, we can
use Vivaldi to position the nodes in a way as to reflect community membership, i.e.
nodes in the same community will be placed closer in space than nodes of different
communities. In other words nodes belonging to the same community will form
natural clusters in space.

Let C(x), C(y) denote the communities’ sets of two nodes x, y ∈ V ,
respectively, of a given graph. Since two nodes either belong to the same
community (C(x) = C(y)) or not, we define the initial node distance between
two nodes x and y as d(x, y):

d(x, y) =

{
0, C(x) = C(y)

1, C(x) �= C(y)
(1)

When C(x) �= C(y), we have set d(x, y) = 1 in order to normalize the distances
in range between 0 and 1. Given this definition of distance, we can employ the
core part of the Vivaldi algorithm to position the nodes appropriately in the n-
dimensional Euclidian space (�n). As one can expect from those dual distances,
Vivaldi will position nodes in the same community close-by in space, while place

Distributed community detection in complex networks using synthetic coordinates8

nodes of different communities away from each other. This is the reason for the
dual nature of the distance function, otherwise all nodes, regardless of community
membership, would gravitate to the same point in space.

In addition, Vivaldi requires a selection of nodes to probe. Each node
calculates a “local” set containing nodes of the same community, and a “foreign”
set containing nodes of different communities. The size of the local set as well as
the size of the foreign set of a node equals the degree of the node. The perfect
construction of these sets depends on the apriori knowledge of node community
membership, which is the actual problem we are trying to solve. However, even
though we do not know the community each node belongs to, there are two facts
we can exploit to make Vivaldi work without this knowledge:

• The first is the fact that, by definition, the number of intra-community links
of a node exceeds the number of its inter-community links. This means that,
if we assume that all of a node’s neighbors belong to the same community,
this assumption will be, mostly, correct, which in turn means that even though
some times the node may move to the wrong direction, most of the time it will
move to the right direction and thus, will eventually acquire an appropriate
position in space. Thus, we let the local set L(x) of a node x ∈ V , be its
“neighbor set”.

L(x) = {y ∈ V : x ∼ y} (2)

The distance from node x to nodes in L(x) is set to 1 according to Equation
(1).

• The second fact we exploit concerns the foreign links. Since we consider all a
node’s links as local links, we need to find some nodes which most likely do not
belong to the same community as that node, and therefor will be considered as
foreign nodes. This can simply be done by randomly selecting a small number
of nodes from the entire graph. Assuming that the number of communities in
the graph is at least three, the majority of the nodes in this set will belong
to a different community than the node itself. These nodes will comprise the
“foreign set” F (x) of node x ∈ V :

F (x) ⊂ {y ∈ V : x �∼ y}. (3)

The distance from node x to the nodes in F (x) is set to 1 according to Equation
(1).

The pseudo-code of the position estimation algorithm is given in Algorithm
1 and it is described hereafter. The function getRandomNumber(0, 1) returns a
random number in [0, 1]. Initially, each node is placed at a random position in �n.
Iteratively, each node x ∈ V randomly selects a node from either its L(x) or its
F (x) set (see line 8,11 of Algorithm 1). It then uses Vivaldi to update its current

Distributed community detection in complex networks using synthetic coordinates9

input : L(x), F (x), ∀x ∈ V .
output: p(x), ∀x ∈ V.

foreach x ∈ V do1

p(x) = random position in �n2

ite(x) = 03

end4
repeat5

foreach x ∈ V do6

if getRandomNumber(0, 1) < 0.5 then7

Let v be a random vertex from L(x)8

p(x) = V ivaldi(p(x), p(v), 0)9

else10

Let v be a random vertex from F (x)11

p(x) = V ivaldi(p(x), p(v), 1)12

end13
ite(x) = ite(x) + 114

if ite(x) > 5 · (|L(x)|+ |F (x)|) then15

ite(x) = 016

maxD = maxy∈L(x)(||p(x)− p(y)||)17

minD = miny∈L(x)(||p(x)− p(y)||)18

T2 = minD +max(maxD−minD
3 , 1

3)19

μ = minD+maxD
220

σn =

√
Ey∈L(x)[(||p(x)−p(y)||−µ)2]

T2
21

if σn > 0.6 then22
foreach y ∈ L(x) do23

if ||p(x) − p(y)|| > T2 then24

L(x) = L(x)− {y}25

end26

end27

foreach y ∈ F (x) do28

if ||p(x) − p(y)|| ≤ T2 then29

F (x) = F (x)− {y}30

end31

end32

end33

end34

end35

until ∀x ∈ V p(x) is stable36

Algorithm 1: The position estimation algorithm.

Distributed community detection in complex networks using synthetic coordinates10

(a) (b) (c) (d)

Figure 1. Snapshots of the execution of the first phase of our algorithm for
a graph with known community structure. (a) initialization, (b) after 150
iterations, (c) after 400 iterations.

position using the appropriate distance (i.e. 0 or 1) to the selected node (see lines
9, 12 of Algorithm 1).

Each node continues this process until it deems its position to have stabilized
as much as possible (see line 36 of Algorithm 1). This is done by calculating the
sum of the distances between each two consecutive positions of the node between
40 iterations (corresponding to 40 position updates, experiments showed a larger
number only slows down the algorithm without adding to efficiency). Each node
also calculates the distance, in a straight line, between the two positions before and
after the 40 updates. Should this value be less than one tenth the actual traveled
distance (the aforementioned sum) for 40 consecutive times, the node declares
itself to have stabilized. This means that even though the node moved 40 times,
its movement was around the same position in space instead of moving constantly
in the same direction. Each node continues, however, to execute the algorithm
until at least 90% of its “foreign” and “local” sets have also stabilized.

As we have already mentioned, both the “local” and the “foreign” sets of a
node will initially contain erroneous nodes. One of the most important augments
of our algorithm is its ability to dynamically correct those sets (see lines 23-32 of
Algorithm 1). This is based on the fact that, as the algorithm progresses, those
nodes in the “local” set of a node x which do not actually belong in the same
community as x, will be located a long distance away from X. As a result, even
though the distances between a node and the nodes in its “local” set will initially
be uniformly distributed, after a while we will notice the nodes of the local set to
be divided into two groups of smaller and larger distance values. This is a good
indication that we can separate the wheat from the chaff, which is implemented in
the following fashion:

Let ite(x) denotes the number of updates of node x (see lines 3, 14 of Algorithm
1). After several number of updates (5 · (|L(x)| + |F (x)|, where |L(x)|, |F (x)|
denote the number of elements of the sets L(x), F (x)), the node x as will have
been updated from most of the nodes of L(x), F (x). This means that x is able to

Distributed community detection in complex networks using synthetic coordinates11

check its “confidence level” in identifying the erroneous nodes of its local-foreign
sets (see line 15 of Algorithm 1).

Let minD and maxD denote the minimum and maximum Euclidean distance
values from x to all the nodes in its “local” set, respectively (see lines 17-18 of
Algorithm 1). Let μ be the average of minD and maxD (see line 19 of Algorithm
1). Next, we calculate the normalized standard deviation σn of its distances to
the nodes in its “local” set, normalizing σn based on its distance of the closest and
furthest away node in the local set (the same formula used in equation 5):

σn =

√
Ey∈L(x)[(||p(x)− p(y)|| − μ)2]

T2

(4)

In addition, σn is computed used the value μ instead of the mean value of distances.
This is because our “confidence” should be high when most neighbor distances
are located in the extreme ends (close to minD and maxD). Should σn exceed a
certain threshold T1 = 0.6, the node iterates between the nodes in both its “local”
and “foreign” sets, removing any inappropriate nodes (see line 22 of Algorithm 1).
In order to identify a node as “local” or “foreign” based on its distance, another
threshold is required. This threshold T2 is calculated as follows:

T2 = minD +max(
maxD −minD

3
,
1

3
), (5)

The idea behind this formula is that the distance of a “foreign” node is both related
to the distance values of the rest of the nodes but also has a fixed minimum value.
Overall, this dynamic set correction gave us on the benchmark graph tests an
increase of about 6% on average.

Fig. 1 shows a small time-line of the execution of our algorithm on a
graph with 1024 nodes, degree 20, and a known community structure comprising
four communities. We have used different colors for the nodes of each different
community. Initially, nodes were randomly placed in �2. As we can see, in the
beginning all colors are dispersed on the entire space. As the algorithm progresses,
we see that nodes of the same color, belonging to the same community, gradually
gravitate to the same area, forming distinct clusters in space.

3.3. Hierarchical clustering

After each node has converged to a point in space, we use a hierarchical clustering
algorithm to perform the actual grouping of nodes into clusters. The main
advantages of the hierarchical clustering algorithms is that the number of clusters
need not be specified a priory, and problems due to initialization and local minima
do not arise [23]. The pseudo-code of the proposed hierarchical clustering method
is given in Algorithm 2 and it is described hereafter. Let c(x) denote the cluster

Distributed community detection in complex networks using synthetic coordinates12

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
0

0.2

0.4

0.6

0.8

1

density

SCCD

local/degree
 0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

20
40

60
80

0.5
0.6

0.7
0.8

0.9
0

0.2

0.4

0.6

0.8

1

Comm

SCCD

local/degree
 0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 2. (a),(b) The mean value of accuracy under (a) different ratios of total
degree to local links (local/degree) and number of communities (Comm) and
(b) total degree to local links (local/degree) and densities for our algorithm.

20
40

60
80

0.5
0.6

0.7
0.8

0.9
0

0.2

0.4

0.6

0.8

1

Comm

Lancichinetti

local/degree
 0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
0

0.2

0.4

0.6

0.8

1

density

Lancichinetti

local/degree
 0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 3. (a),(b) The mean value of accuracy under (a) different ratios of total
degree to local links (local/degree) and number of communities (Comm) and
(b) total degree to local links (local/degree) and densities for the Lancichinetti
algorithm.

10 20 30 40 50 60 70 80

0.5
0.6

0.7
0.8

0.9
0

0.2

0.4

0.6

0.8

1

Comm

Chen

local/degree
 0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
0

0.5

1

density

Chen

local/degree
 0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 4. (a),(b) The mean value of accuracy under (a) different ratios of
total degree to local links (local/degree) and number of communities (Comm)
and (b) total degree to local links (local/degree) and densities for the Chen et
al. algorithm.

Distributed community detection in complex networks using synthetic coordinates13

input : p(x), ∀x ∈ V .
output: c(x), ∀x ∈ V.

i = 11

foreach x ∈ V do2

c(x) = i3

i = i+ 14

end5

repeat6

S = 07

foreach x ∈ V do8

y = getClosest(x)9

if getClosest(y) = x ∧ |p(x)− p(y)|2 < 1
2 then10

S = S + 111

p(x) = |x|·p(x)+|y|·p(y)
|x|+|y|12

c(y) = c(x)13

x = x ∪ y14
V = V − y15

end16

end17

until S = 018

Algorithm 2: The Hierarchical clustering algorithm.

id of node x. The function getClosest(x) returns the closest neighboring cluster
of x.

Firstly, each node is considered as a (singleton) cluster (see lines 2-5 of
Algorithm 2). In addition, to make the procedure completely distributed, each
node-cluster is aware of the location only of its neighboring node-clusters. Then,
the following loop is executed repeatedly, until no appropriate pair of clusters can
be located: Given a pair of neighboring clusters x and y, if both of them are each
other’s closest neighbor and the distance between the two clusters is less than a
threshold T3 =

1
2
, then those two clusters are merged in the following fashion (see

line 10 of Algorithm 2):

• The merged cluster contains the union of the neighbors of A and B (see lines
14-15 of Algorithm 2).

• Its position is calculated as the weighted based on the population of nodes
(|x| and |y|) in each cluster x and y average of the positions of x and y, p(x)
and p(y) (see line 12 of Algorithm 2):

p(x) =
|x| · p(x) + |y| · p(y)

|x|+ |y| (6)

Since, d(x, y) is zero and one when x, y belong on the same and different
community, respectively, then it holds that the selection of T3 = 0.5 is the most

Distributed community detection in complex networks using synthetic coordinates14

20
40

60
80

0.5
0.6

0.7
0.8

0.9
0

0.2

0.4

0.6

0.8

1

Comm

Blondel

local/degree
 0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
0

0.5

1

density

Blondel

local/degree
 0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 5. (a),(b) The mean value of accuracy under (a) different ratios of
total degree to local links (local/degree) and number of communities (Comm)
and (b) total degree to local links (local/degree) and densities for the Blondel
algorithm.

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
0

0.2

0.4

0.6

0.8

1

density

Infomap

local/degree
 0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

20
40

60
80

0.5
0.6

0.7
0.8

0.9
0

0.2

0.4

0.6

0.8

1

Comm

Infomap

local/degree

(b)

Figure 6. (a),(b) The mean value of accuracy under (a) different ratios of
total degree to local links (local/degree) and number of communities (Comm)
and (b) total degree to local links (local/degree) and densities for the Infomap
algorithm.

physical selection. Generally, T3 ∈ (0, 1). When T3 gets low values (e.g. close
to zero), then the proposed method results high number of small communities
(oversegmentation). Otherwise, if T3 gets high values (e.g. close to one), then we
get low number of large communities.

3.4. Communication Load and Computational Complexity

SSCD can be implemented as a fully distributed system, since both of the two
main parts of the proposed method are distributed.

• The first part concerns the position estimation algorithm that uses the Vivaldi
synthetic network coordinates [8] (see Sections 3.1 and 3.2). This part can be

Distributed community detection in complex networks using synthetic coordinates15

2000 4000 6000 8000 10000
0

200

400

600

800

1000

Graph size

Communation load per node

Figure 7. Average number of Vivaldi update messages per node, per graph size.

computed by a distributed algorithm. It holds that each node only maintains
knowledge for a handful of other nodes, computing and continuously adjusting
its coordinates based on the coordinates of the nodes that belong on its local
and foreign sets, making it completely distributed.

• The second part concerns the hierarchical clustering that can be computed
by a distributed algorithm. In order to make this procedure distributed, each
node-cluster is aware of the location only of its neighboring node-clusters (see
Section 3.3).

Hereafter, we provide an analysis of the communication load and
computational complexity.

• Concerning the position estimation algorithm, it holds that during the update
process each node communicates with a node of its local or its foreign set. So,
the communication load depends on the time of convergence. In order to
measure the dependance of the number of messages to the size of the graphs,
we performed experiments on graphs with identical parameters but varying
sizes. Namely, we used 9 graphs with 2000, 3000, ..., 10000 nodes, with 500
nodes per community, 10 degree per node and a 0.75 ratio of local to foreign
links per node. Fig. 3.4 shows that the average number of update messages
per node required by Vivaldi in order to stabilize is approximately the same,
regardless of the size of the graph. This means that the convergence time
(computational complexity) per node is also independent of the size of the
graph.

• Concerning the hierarchical clustering algorithm, it holds that during the
merging process each node communicates with the nodes of its neighborhood
in order to find the closest. In a distributed implementation, the initial

Distributed community detection in complex networks using synthetic coordinates16

communication load is O(degree) for the first merging. Next, each new cluster
sends its updated position to its neighborhood that needs O(degree) messages.
In the second level of merging, each new cluster sends its updated position
to its neighborhood that have size O(21 · degree) (worst case). In the last
level of merging (l = log(N

Comm
)), when the hierarchical clustering tree is

balanced, each new cluster sends its updated position to its neighborhood
that have size O(2l · degree) = O(N

Comm
· degree) (worst case). The total

communication load is O(N · degree+ N
2
· 21 · degree+ ...+ N

2l
· 2l · degree) =

O(l ·N · degree) = O(log(N
Comm

) ·N · degree). The computation cost per node
is O(l · degree) = O(log(N

Comm
) · degree).

The communication load as well as the computational complexity of the proposed
distributed framework make possible the execution of SCCD on graphs of very
large scale (e.g. 50 millions of nodes with a billion of links).

The proposed method has been implemented in Java and it is not optimized for
speed. Moreover, Vivaldi and hierarchal clustering algorithms are not implemented
as a distributed system. Hereafter, we have reported the execution times of
our implementation for the 208 benchmark graphs (see Section 4.1) that will be
significantly reduced in a fully distributed implementation. For our experiments,
we have used an Intel Xeon CPU of 2.67 GHz with 16 GB of memory. The average
execution times for the benchmark graphs of 1000, 5000 and 10000 nodes are 28,
178 and 403 secs, respectively.

4. Benchmark Graph Experiments

4.1. Benchmark graphs

We have created a variety of benchmark graphs with known community structure to
test the accuracy of our algorithm. Benchmark graphs are essential in the testing
of a community detection algorithm since there is an apriori knowledge of the
structure of the graph and thus one is able to accurately ascertain the accuracy of
the algorithm. Since there is no consensus on the definition of a community, using
a real-world graph makes it more difficult to assess the accuracy of a community
partition.

Our benchmark graphs were generated randomly given the following set of
parameters:

• The number of nodes N of the graph.

• The number of communities Comm of the graph.

• The ratio of local links to node degree local/degree.

• The (average) degree of nodes degree.

Distributed community detection in complex networks using synthetic coordinates17

20
40

60
80

0.5
0.6

0.7
0.8

0.9
0

0.2

0.4

0.6

0.8

1

Comm

SCCD

local/degree
 0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
0

0.2

0.4

0.6

0.8

1

density

SCCD

local/degree
 0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 8. (a),(b) The mean value of normalized mutual information under
(a) different ratios of total degree to local links (local/degree) and number of
communities (Comm) and (b) total degree to local links (local/degree) and
densities for our algorithm.

20
40

60
80

0.5
0.6

0.7
0.8

0.9
0

0.2

0.4

0.6

0.8

1

Comm

Lancichinetti

local/degree
 0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
0

0.2

0.4

0.6

0.8

1

density

Lancichinetti

local/degree
 0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 9. (a),(b) The mean value of normalized mutual information under
(a) different ratios of total degree to local links (local/degree) and number of
communities (Comm) and (b) total degree to local links (local/degree) and
densities for the Lancichinetti algorithm.

Notice that even though the number of the nodes, the number of the
communities and the degree of the nodes are parameters of the construction of
the graph, the degree of each node as well as the number of nodes in a single
community varies based on a pareto distribution. This enables us to create graphs
of community sizes and individual degrees varying up to an order of magnitude.

The parameters used by the algorithm and their corresponding values are
shown in Table 1. In total, we created a number of 208 benchmark graphs.

A demonstration of the propose method is given in §, that contains the

§ http://www.csd.uoc.gr/~cpanag/DEMOS/commDetection.htm

Distributed community detection in complex networks using synthetic coordinates18

20
40

60
80

0.5
0.6

0.7
0.8

0.9
0

0.2

0.4

0.6

0.8

1

Comm

Chen

local/degree
 0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
0

0.2

0.4

0.6

0.8

1

density

Chen

local/degree
 0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 10. (a),(b) The mean value of normalized mutual information under
(a) different ratios of total degree to local links (local/degree) and number of
communities (Comm) and (b) total degree to local links (local/degree) and
densities for the Chen et al. algorithm.

20
40

60
80

0.5
0.6

0.7
0.8

0.9
0

0.2

0.4

0.6

0.8

1

Comm

Blondel

local/degree
 0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
0

0.2

0.4

0.6

0.8

1

density

Blondel

local/degree
 0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 11. (a),(b) The mean value of normalized mutual information under
(a) different ratios of total degree to local links (local/degree) and number of
communities (Comm) and (b) total degree to local links (local/degree) and
densities for the Blondel algorithm.

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
0

0.2

0.4

0.6

0.8

1

density

Infomap

local/degree
 0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

10 20 30 40 50 60 70 80

0.5
0.6

0.7
0.8

0.9
0

0.2

0.4

0.6

0.8

1

Comm

Infomap

local/degree
 0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 12. (a),(b) The mean value of normalized mutual information under
(a) different ratios of total degree to local links (local/degree) and number of
communities (Comm) and (b) total degree to local links (local/degree) and
densities for the Infomap algorithm.

Distributed community detection in complex networks using synthetic coordinates19

0 0.2 0.4 0.6 0.8 1
0

20%

40%

60%

90%

100%

accuracy

SCCD
Lancichinetti
Chen
Blondel
Infomap

(a)

0 0.2 0.4 0.6 0.8 1
0

20%

40%

60%

80%

100%

NMI

SCCD
Lancichinetti
Chen
Blondel
Infomap

(b)

Figure 13. (a),(b) Percentage of “successful” experiments, given an accuracy
success threshold (x axis) for (a) the accuracy metric and (b) the NMI metric.

N 1000, 5000, 10000
Comm 5, 10, 20, 40, 80
local/degree 0.55, 0.65, 0.75, 0.85
degree 10, 20, 30, 40

Table 1. The different values for the used parameters.

benchmark graphs, related articles and an executable of the proposed method.

4.2. Comparison metrics

We compared the five algorithms using two accuracy-related metrics found mostly
used in the literature. The first is a simple accuracy metric paired however with
the Hungarian algorithm. The simple accuracy is defined as follows: Let Si, i ∈
{1, ..., Comm} be the estimated and Ŝi, i ∈ {1, ..., Comm} the corresponding actual
communities. The accuracy (acc) is given by the average (of all communities) of
the number of nodes that belong to the intersection of Si∩Ŝi divided by the number
of nodes that belongs to the union Si ∪ Ŝi.

acc =
1

Comm
·
Comm∑
i=1

|Si ∩ Ŝi|
|Si ∪ Ŝi|

(7)

It holds that acc ∈ [0, 1], the higher the accuracy the better the results. When
acc = 1 the community detection algorithm gives perfect results. The Hungarian
algorithm [24] is used to better match the estimated communities with the actual
communities, in order to calculate and average the accuracies over all communities.

We also used the Normalized Mutual Information (NMI) metric to evaluate
the correctness of the detected communities [25]. NMI is calculated using the

Distributed community detection in complex networks using synthetic coordinates20

following formula:

NMI =

k∑
i=1

l∑
j=1

ni,jlog(
n·ni,j

ni·nj
)√

(
k∑

i=1

nilog(
ni

n
))(

l∑
j=1

njlog(
nj

n
))

(8)

where i iterates through the population of the “correct” communities, j iterates
through the communities detected by the algorithm, ni,j is the size of the union of
the nodes of the ith and jth communities, ni is the size of the ith community and
n is the total number of nodes in the graph. In both cases, a value close to one
indicates correct detection of the communities of the graph.

4.3. Results on benchmark graphs

The performance of four different algorithms, SCCD presented in this paper,
the Lancichinetti [7], Chen [19], and Blondel [20] algorithms are compared on
Benchmark graphs. A brief description of these algorithms has been provided in
the Related Work section of the paper.

Each graph shows the performance of a single algorithm using either the first
or the second metric, on all 208 benchmark graphs. Since there are four types of
parameters which describe the graphs of the experiments, we decided to use the
two most important factors which affect the algorithms’ performances, in order
to plot the accuracies in 3D graphs. The first of these factors is always the local
links to node degree value, which dictates how strong the clear the communities
in the graph are. The second factor in some cases is the number of communities
in the graph, while in other cases is the (average) density of these communities.
Thus, we decided to plot, for each algorithm and accuracy metric, two 3D graphs
using, in one case, the number of communities as the values on one the axes and
the average density on the other. Each accuracy value in the graphs is the average
of the accuracies of all the experiments based on the benchmark graphs with the
same value on the aforementioned factors.

Fig. 13 shows the percentage of “successful” experiments, given an accuracy
threshold to define “success”. One can see the better performance of our algorithm,
especially in “tougher” cases.

We can see from 3D graphs and from Fig. 13 how our algorithm greatly
outperforms almost all other algorithms, algorithms, with the exception of the
Blondel algorithm. Compared with Blondel, we see that the performance of SCCD
is slightly higher. The average ACC and NMI of SCCD is 95.5% and 94.9%,
respectively. The second highest performance method is Blondel algorithm that
clearly outperforms the rest algorithms of literature. The average ACC and NMI

Distributed community detection in complex networks using synthetic coordinates21

Graph Nodes Nr of coms Modularity Conductance Coverage
SCCD Blondel SCCD Blondel SCCD Blondel SCCD Blondel

Citations 27771 375 171 0.58 0.59 0.25 0.05 0.7 0.74
Enron email 36693 1590 1247 0.5 0.51 0.09 0.03 0.73 0.73

Amazon 262111 8943 177 0.87 0.89 0.3 0.1 0.88 0.92
stanford.edu 281904 3997 793 0.91 0.91 0.12 0.01 0.96 0.98

nd.edu 325730 6825 475 0.91 0.93 0.2 0.04 0.93 0.96

Table 2. Results on real world graphs without merging.

Graph Nodes Nr of coms Modularity Conductance Coverage
SCCD Blondel SCCD Blondel SCCD Blondel SCCD Blondel

Citations 27771 181 171 0.58 0.59 0.07 0.05 0.78 0.74
Enron email 36693 1300 1247 0.5 0.51 0.04 0.03 0.74 0.73
Amazon 262111 594 177 0.88 0.89 0.1 0.1 0.93 0.92
stanford.edu 281904 1122 793 0.93 0.91 0.02 0.01 0.98 0.98
nd.edu 325730 995 475 0.94 0.93 0.08 0.04 0.97 0.96

Table 3. Results on real world graphs with merging.

of Blondel algorithm is 89.4% and 89.7%, respectively. Apart from SCCD and
Blondel, only Lancichinetti has produced some respectable results, however the
figures show that it fails to work on less dense graphs. The average ACC and
NMI of Lancichinetti is 66.1% and 72.3%, respectively. Lancichinetti has the
advantage of being able to detect just one community (whereas SCCD and Blondel
only produce all communities). In order to do so, however, it relies on the existence
of triangles in the graph, which is the case only in more dense graphs, hence the
observed results. Chen and Infomap obtained very low performance results.

5. Experiments on Real World Graphs

We also conducted experiments on five real world graphs of diverse sizes. Due to the
size of those graphs, the only algorithms capable of analyzing them in reasonable
time were our algorithm and the Blondel algorithm. These graphs include a
network of scientific papers and their citations [26], an email communication
network from Enron, two web graphs (of Stanford.edu and nd.edu) and an Amazon
product co-purchasing network, all obtained from [27].

5.1. Comparison metrics

Three different metrics are used for the comparison of results on real world graphs,
namely modularity, conductance, and coverage [21]. These are different than those
used in the case of benchmark graphs, since the real decomposition of graphs into

Distributed community detection in complex networks using synthetic coordinates22

communities is not known and as such the resulted community structure cannot
be compared against the real one.

One of the most popular validation metrics for topological clustering,
modularity states that a good cluster should have a bigger than expected number
of internal edges and a smaller than expected number of inter-cluster edges when
compared to a random graph with similar characteristics. The modularity Q for a
clustering given below, where e ∈ �k,k is a symmetric matrix whose element eij is
the fraction of all edges in the network that link vertices in communities i and j,
and Tr(e) is the trace of matrix e, i.e., the sum of elements from its main diagonal.

Q = Tr(e)−
k∑

i=1

(
k∑

j=1

eij)
2 (9)

The modularity Q often presents values between 0 and 1, with 1 representing a
clustering with very strong community characteristics.

The conductance of a cut is a metric that compares the size of a cut
(i.e., the number of edges cut) and the number of edges in either of the two
subgraphs induced by that cut. The conductance φ(G) of a graph is the minimum
conductance value between all its clusters.

Consider a cut that divides G = (V,E) into k non-overlapping clusters
C1, C2, ..., Ck. The conductance of any given cluster φ(Ci) is given by the following
ratio:

φ(Ci) =

∑
(u,v)∈E∧u∈Ci∧v/∈Ci

1

min (α(Ci), α(V \ Ci))
(10)

where
α(Ci) =

∑
(u,v)∈E∧u∈Ci∧v∈V

1 (11)

Essentially, a(Ci) is the number of edges with at least one endpoint in Ci. This
φ(Ci) value represents the cost of one cut that bisects G into two vertex sets Ci

and V \ Ci (the complement of Ci). Since we want to find a number k of clusters,
we will need k − 1 cuts to achieve that number. The conductance for the whole
clustering is the average value of those k − 1 φ cuts, as follows:

φ(G) = avg(φ(Ci)), ∀Ci ⊆ V (12)

The final metric used to assess the performance of clustering algorithms on
real world graphs is called Coverage. The coverage of a clustering C (where
C = C1, C2, ..., Ck) is given as the fraction of the intra-cluster edges (EC) with
respect to all edges (EG) in the whole graph G, coverage(C) = EC

EG
. Coverage

values usually range from 0 to 1. Higher values of coverage mean that there are
more edges inside the clusters than edges linking different clusters, which translates
to a better clustering.

Distributed community detection in complex networks using synthetic coordinates23

5.2. Results on real world graphs

In Table 2, we present the results of running SCCD and Blondel [20] on these
graphs, using three metrics for comparison, namely modularity, conductance and
coverage. An explanatory survey of those metrics can be found in [21]. Both a
high modularity and a high coverage indicate a better partitioning of the graph
whereas in the case of conductance, a lower value is better. Although we included
three metrics to get a better understanding of how the two algorithms behave in
real world graphs, it is widely accepted that the modularity is the metric which
better captures all the characteristics of a good partitioning of the graph into clear
communities.

Two observations are quickly apparent from the results. One is that although
the two algorithms locate a completely different number of communities for each
graph, in most cases, the respective modularities are very comparable (in the order
of 0.01). This shows that a “good” partitioning cannot be achieved in one way only.
Coverage values are also comparable. This is not the case for conductance values
where Blondel outperforms our algorithm. This is because conductance favors
algorithms which “produce” a smaller number of communities. The main reason
our algorithm prefers many, denser communities is the fact that it tries to locate
strong communities. This stems from the algorithm assumption that the short
links per node are more in number than the long links.

input : C = {c(x), ∀x ∈ V }.
output: c′(x), ∀x ∈ V.

foreach x ∈ V do1

c′(x) = c(x)2

end3

repeat4

S = 05
for i = 1 to |C| do6

A = {x : c(x) = Ci}7

foreach B ∼ A do8

if getDM(A,B) > 0 then9

c′(B) = c(A)10

A = A ∪B11

V = V −B12

S = S + 113

end14

end15

end16

until S = 017

Algorithm 3: The Correction Clustering algorithm.

In order to verify this, we modified our algorithm by adding a third phase

Distributed community detection in complex networks using synthetic coordinates24

which iteratively merges the communities found, if this results in an increase of
the modularity. The pseudo-code of this face is given in Algorithm 3 and it is
described hereafter. Let c′(x) denotes of updated cluster id of node x. Although
the modularity is calculated on the entire graph, the change in the modularity value
dm can be computed only using information related to the communities (i,j) which
are to be merged, since the substraction eliminates the values in the modularity
table of communities not participating in the merge. This is implemented by
function getDM(., .) (see line 9 of algorithm 3).

dm = ėii − ȧ2i − (eii + ejj − a2i − a2j), (13)

where ė is the modularity table before the merge and e is after the merge. Thus
eii and ėii are the fraction of all edges in the graph with both ends connected to
nodes in community i, before and after the merge, and ȧi and ai are the fractions
of edges with at least one end vertex in community i before the merge and after
the merge, respectively. Note that community i in the merged graph corresponds
to the community that results from merging communities i and j before the merge.

The only global information required in this phase is the number of edges
in the initial graph, in order to calculate the aforementioned fractions. Although
this somehow limits the completely distributed nature of our algorithm, it is an
information which is easily obtained and furthermore, in contrast to the Blondel
algorithm, does not change as communities are merged. Table 3 shows the new
results after we apply the merging step. We can see now that both the number of
communities and the conductance value are also comparable in the two algorithms.
This shows that there is a range in the number of communities that equally produce
partitions of quality (modularity values).

It is also noteworthy that using this final step, our algorithm is able to
produce any desired (user-defined) number of communities from the range of
quality partitioning (highest modularity value)

5.3. Method Sensitivity to Parameters and Initial Conditions

The proposed method has two main parameters the T1 and T3 that have been set
0.6 and 0.5 under all experiments. In this section we have performed experiments
to measure the sensitivity of the proposed method to several values of T1 and T3.
In addition, we have tested the stability of the proposed algorithm, i.e. how much
the output is affected by the (random) initial conditions from which it starts.

Fig. 14 depicts the modularity and the number of communities of Citations
real graph for different values of T3. Modularity receives high values for several
values of T3 (T3 ∈ [0.2, 0.6]), which means that the proposed method is not sensitive
on T3 changes. When the merging process is not executed (see Fig. 14(b)), it holds

Distributed community detection in complex networks using synthetic coordinates25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
3

M
od

ul
ar

ity

without merging
with merging

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1000

2000

3000

4000

5000

6000

7000

8000

9000
without merging

T3

N
um

be
r

of
 C

om
m

un
iti

es

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
140

145

150

155

160

165

170

175

180
with merging

T3

N
um

be
r

of
 C

om
m

un
iti

es

(c)

Figure 14. (a),(b) The modularity and the number of communities of Citations
real graph for different values of T3.

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

T1

ACC
NMI

Figure 15. The average value of ACC and NMI for different values of T1

under the 208 benchmark graphs.

Distributed community detection in complex networks using synthetic coordinates26

that when T3 gets low values, then the proposed method results high number
of communities. Otherwise, if T3 gets high values, then we get low number of
communities. When the merging process is executed the number of communities
is not really affected by T3, since the merging significantly decreases the number
of communities (see Fig. 14(c)).

Fig. 15 the average value of ACC and NMI for different values of T1 under
the 208 benchmark graphs. It holds that the performance of the method is not
really affected by changing T1 (T1 ∈ [0.2, 0.8]).

In order to examine how much the performance of the proposed method is
affected by the (random) initial conditions from which it starts, we have executed
it for each benchmark graph ten times and we measure the standard deviation of
ACC and NMI getting very low values, 0.0079 and 0.0051 on average, respectively.
This means that the initial conditions does not affect the performance of the
proposed method.

6. Conclusions and Future Work

We presented a community finding algorithm which is based on a custom-tailored
version of the Vivaldi network coordinate system. The proposed algorithm has been
tested on a large number of benchmark graphs with known community structure
comparing it with several state-of-the-art algorithms, proving its effectiveness
against all other algorithms. In addition we performed experiments on large, real
world datasets and compared it with the next most efficient algorithm resulting in
very comparable effectiveness. Moreover, our algorithm can employ a simple third
step to allow it to provide a wider range of similarly optimal results.

We plan to expand the algorithm, in order to enable the detection of also
overlapping communities. In addition, another goal is the modification of the
algorithm in order to locate only a single community. Both of these problems are of
great interest to the field of social networks, since overlaps can be appeared between
communities. In addition, it an is important to provide the single community
detection (per node) when each node of the social network ask for its community
instead of entire community detection. Another possible extension of the proposed
scheme is the application in weighted networks that can measure the strength
of social relationships in social networks [28]. In iterative process of position
estimation algorithm, this extension can be done by setting the probability of
edge selection according to the edge weight, so that the strong edges would have
higher selection probability corresponding to high-tension springs.

Finally, there is an emerging need to devise community detection algorithms
for dynamic graphs, i.e. graphs whose structure evolved over time. Such algorithms
would be able to capture for example the dynamic evolution of social networks.

Distributed community detection in complex networks using synthetic coordinates27

So, we plan to extend the proposed community finding method for dynamic
graphs. This extension is possible, since SCCD is a fully distributed system,
under the constraint that the dynamic evolution of social network is slower than
the adaptation of the Vivaldi synthetic network coordinates and the proposed
distributed hierarchial clustering algorithm.

Acknowledgments

This research has been partially co-financed by the European Union (European
Social Fund - ESF) and Greek national funds through the Operational
Program “Education and Lifelong Learning” of the National Strategic Reference
Framework (NSRF) - Research Funding Programs: ARCHIMEDE III-TEI-Crete-
P2PCOORD.

References

[1] Gary William Flake, Steve Lawrence, C. Lee Giles, and Frans M. Coetzee. Self-organization
and identification of web communities. IEEE Computer, 35:66–71, March 2002.

[2] Dimitrios Katsaros, George Pallis, Konstantinos Stamos, Athena Vakali, Antonis
Sidiropoulos, and Yannis Manolopoulos. Cdns content outsourcing via generalized
communities. IEEE Transactions on Knowledge and Data Engineering, 21:137–151, 2009.

[3] M. Girvan and M. E. J. Newman. Community structure in social and biological networks.
Proceedings of the National Academy of Sciences of the United States of America,
99(12):7821–7826, June 2002.

[4] M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks.
Physical Review E, 69(2):026113, Feb 2004.

[5] Mo-Han Hsieh and Christopher L Magee. A new method for finding hierarchical subgroups
from networks. Social Networks, 32(3):234–244, 2010.

[6] Symeon Papadopoulos, Andre Skusa, Athena Vakali, Yiannis Kompatsiaris, and Nadine
Wagner. Bridge bounding: A local approach for efficient community discovery in complex
networks. Technical Report arXiv:0902.0871, Feb 2009.

[7] Andrea Lancichinetti, Santo Fortunato, and János Kertész. Detecting the overlapping
and hierarchical community structure in complex networks. New Journal of Physics,
11(3):033015+, March 2009.

[8] Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris. Vivaldi: A decentralized
network coordinate system. In Proceedings of the ACM SIGCOMM ’04 Conference,
August 2004.

[9] Harris Papadakis, Paraskevi Fragopoulou, and Costas Panagiotakis. Distributed community
detection: Finding neighborhoods in a complex world using synthetic coordinates. In
ISCC’11, pages 1145–1150, 2011.

[10] Andrea Lancichinetti and Santo Fortunato. Community detection algorithms: a
comparative analysis. Physical Review E, 80(5 Pt 2):056117, Sep 2009.

[11] Satu Elisa Schaeffer. Graph clustering. Computer Science Review, 1(1):27 – 64, 2007.
[12] Reid Andersen, Fan Chung, and Kevin Lang. Local graph partitioning using pagerank

vectors. In Foundations of Computer Science, 2006. FOCS’06. 47th Annual IEEE
Symposium on, pages 475–486. IEEE, 2006.

Distributed community detection in complex networks using synthetic coordinates28

[13] Pan Hui, Eiko Yoneki, Shu Yan Chan, and Jon Crowcroft. Distributed community detection
in delay tolerant networks. In Proceedings of 2nd ACM/IEEE international workshop on
Mobility in the evolving internet architecture, page 7. ACM, 2007.

[14] Imre Derényi, Gergely Palla, and Tamás Vicsek. Clique Percolation in Random Networks.
Physical Review Letters, 94(16):160–202, Apr 2005.

[15] Gergely Palla, Imre Derenyi, Illes Farkas, and Tamas Vicsek. Uncovering the overlapping
community structure of complex networks in nature and society, June 2005.

[16] F. Wu and B. A. Huberman. Finding communities in linear time: a physics approach. The
European Physical Journal B - Condensed Matter and Complex Systems, 38(2):331–338,
March 2004.

[17] Stijn Van Dongen. Graph clustering via a discrete uncoupling process. SIAM J. Matrix
Anal. Appl., 30:121–141, February 2008.

[18] James P. Bagrow and Erik M. Bollt. Local method for detecting communities. Physical
Review E, 72(4):46–108, Oct 2005.

[19] Jie Chen and Yousef Saad. Dense subgraph extraction with application to community
detection. IEEE Transactions on Knowledge and Data Engineering, 24:1216–1230, 2012.

[20] V.D. Blondel, J.L. Guillaume, R. Lambiotte, and E.L.J.S. Mech. Fast unfolding of
communities in large networks. J. Stat. Mech, page P10008, 2008.

[21] Hélio Almeida, Dorgival Guedes, Wagner Meira, and Mohammed J. Zaki. Is there a best
quality metric for graph clusters? In Proceedings of the 2011 European conference on
Machine learning and knowledge discovery in databases - Volume Part I, ECML PKDD’11,
pages 44–59, Berlin, Heidelberg, 2011. Springer-Verlag.

[22] M. Rosvall and C.T. Bergstrom. An information-theoretic framework for resolving
community structure in complex networks. Proceedings of the National Academy of
Sciences, 104(18):7327, 2007.

[23] H. Frigui and R. Krishnapuram. A robust competitive clustering algorithm with applications
in computer vision. IEEE Transactions on Pattern Analysis and Machine Intelligence,
21(5):450–465, 1999.

[24] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial optimization: algorithms
and complexity. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1982.

[25] Alexander Strehl, Joydeep Ghosh, and Claire Cardie. Cluster ensembles - a knowledge reuse
framework for combining multiple partitions. Journal of Machine Learning Research,
3:583–617, 2002.

[26] Cornell kdd cup.
[27] Stanford large network dataset collection.
[28] Tore Opsahl and Pietro Panzarasa. Clustering in weighted networks. Social networks,

31(2):155–163, 2009.

