
A Distributed Algorithm for Community Detection
in Large Graphs

Harris Papadakis∗, Costas Panagiotakis† and Paraskevi Fragopoulou∗
∗Department of Applied Informatics and Multimedia

†Department of Commerce and Marketing,
Technological Educational Institute of Crete, Heraklion, Crete, Greece

Email:adanar@epp.teicrete.gr, cpanag@staff.teicrete.gr, fragopou@ics.forth.gr

Networks in various application domains present an inter-
nal structure, where nodes form groups of tightly connected
components which are more loosely connected to the rest of the
network. Several attempts have been made to provide a formal
definition to the generally described “community finding” con-
cept, providing different approaches. Some algorithms follow
an iterative approach starting by characterizing either the entire
network, or each individual node as community, and splitting
[1] or merging communities respectively, producing a hierar-
chical tree of nested communities, called dendrogram. Several
researchers aim to find the entire hierarchical community
dendrogram [1] while others wish to identify only the optimal
community partition. Some researchers aim at discovering
distinct (non-overlapping) communities, while others allow for
overlaps [2]. The Blondel algorithm described by Blondel et
al. in [3], follows a bottom-up approach. Each node in the
graph comprises a singleton community. Two communities
are merged into one if the resulting community has larger
modularity value that both the initial ones. This is a fast and
accurate algorithm which, detects all communities in the graph.
In suffers however in the sense that it constantly, during its
execution, requires the knowledge of a global information of
the graph, namely the number of its edges (which change
as the algorithm modifies the graph), limiting its distributed
nature. The Infomap algorithm [4] transforms the problem of
community detection into efficiently compressing the structure
of the graph, so that one can recovered almost the entire
structure from the compressed form. This is achieved by
minimizing a function that expresses the tradeoff between
compression factor and loss of information (difference between
the original graph and the reconstructed graph).

In this paper we propose an algorithm to identify the
entire community structure of a network based on interactions
between neighboring nodes. In the core of our proposal lies the
spring metaphor which also inspired the Vivaldi synthetic net-
work coordinate algorithm [5]. The algorithm comprises two
main phases. First, each node selects a “local” set (supposedly)
containing nodes of the same community, and a “foreign” set
containing nodes of different communities. As the algorithm
evolves, and the springs connecting local and foreign nodes
are tightened and relaxed, nodes of the same community pull
each other close together, while nodes of different communities
push each other further away. In the second phase of the

Paraskevi Fragopoulou is also with the Foundation for Research and
Technology-Hellas, Institute of Computer Science, 70013 Heraklion, Crete,
Greece.

algorithm, a hierarchical clustering algorithm on points in
space is used to automatically identify the natural communities
formed in space. Extensive experiments on benchmark graphs
with known community structure indicate that our algorithm
is highly accurate in identifying community membership of
nodes.

I. LOCAL COMMUNITY FINDING

The proposed local community finding algorithm com-
prises the following steps: a) The position estimation algo-
rithm, which is a distributed algorithm inspired by Vivaldi [5],
and b) The community detection algorithm using hierarchical
clustering. In the core of our proposal lies the spring metaphor
which inspired the Vivaldi algorithm. As we mentioned,
Vivaldi uses the spring relaxation metaphor to position the
nodes in a virtual space (the n-dimensional Euclidean space
ℜn), so as the Euclidean distance of any two node positions
approximates the actual distance between those nodes. In the
original application of Vivaldi, the actual distances were the
latencies between Internet hosts. Our algorithm is based on the
idea that by providing our algorithm with our own, appropriate,
definition of distance between nodes, we can use Vivaldi
to position the nodes in a manner as to reflect community
membership, i.e. nodes in the same community will be placed
closer in space than nodes of different communities. In other
words nodes belonging to the same community will form
natural clusters in space. Thus, we define the actual distance
of two nodes in the same community as 0, and for nodes in
different communities as 100.

Given this definition of distance, we can employ the core
part of the Vivaldi algorithm to position the nodes appropri-
ately in ℜn. As one can expect from those dual distances,
Vivaldi will position nodes in the same community close-by
in space, while place nodes of different communities away
from each other. In addition, Vivaldi requires a selection of
nodes to probe. Each node calculates a “local” set containing
(presumably) nodes of the same community, and a “foreign”
set containing nodes of different communities. The size of
the local set as well as the size of the foreign set of a node
equals the degree of the node. The perfect construction of these
sets depends on the apriori knowledge of node community
membership, which is the actual problem we are trying to
solve. However, even though we do not know the community
each node belongs to, there are two facts we can exploit to
make Vivaldi work without this knowledge:

The first is the fact that the number of intra-community



links exceeds the number of inter-community links for each
node. This means that, if we consider all of a node’s neighbors
belonging to the same community, this assumption will be,
mostly, correct, which in turn means that even though some
times the node may move to the wrong direction, most of
the time it will move to the right direction and thus, will
eventually acquire an appropriate position in space. The second
fact we exploit concerns the foreign links. Since we consider
all a node’s links as local links, we need to find some nodes
which most likely do not belong to the same community as that
node, and therefor will be considered as foreign nodes. This
can simply be done by randomly selecting a small number
of nodes from the entire graph. Assuming that the number of
communities in the graph is at least three, the majority of the
nodes in this set will belong to a different community than the
node itself. These nodes will comprise the “foreign set”.

Iteratively, each node randomly selects a node from either
the local or the foreign set. It then uses Vivaldi to update its
current position using that node and the appropriate distance
(i.e: 0 or 100). Each node continues this process until it deems
its position to have stabilized as much as possible. This is done
by calculating the distance of the two positions of the node
between 100 position updates. Should this value be less than
a certain threshold (= 20) for 20 consecutive times, the node
declared itself to have stabilized. It still continues, however, to
execute the algorithm until at least 90% of its “foreign” and
“local” sets have also stabilized.

As we mentioned before, both the “local” and the “foreign”
sets of a node will contain erroneous nodes. One of the most
important augments of our algorithm is its ability to dynami-
cally correct both those sets. This is based on the assumption
that, as the algorithm progresses, those nodes in the “local” set
of a node which do not actually belong in the same community
as that node, will still (after several position updates) be located
a long distance away from that node, whereas the nodes in the
same community will gravitate towards another much faster.
As a result, even though the distances between a node and
the nodes in its “local” will initially be uniformly distributed,
after a while we will notice the distances of the nodes to be
divided into two groups of smaller and larger values. This is
a good indication that we can separate the wheat from the
chaff. This is implemented in the following fashion: Every 50
position updates each node checks its “confidence level” in
identifying the erroneous nodes. This is done by calculating
a modified normalized standard deviation of the distances to
the nodes in its “local” set, where instead of the mean, each
distance is subtracted from the median value of the node
distances. Should this value exceed a certain threshold (= 0.6)
, the node iterates between the nodes in both its “local” and
“foreign” sets, removing any inappropriate nodes. In order to
identify a node as “local” or “foreign” based on its distance,
another threshold is required. This threshold is calculated as
minDistance+max(maxDistance−minDistance

3 , 100
3 ), where

minDistance and maxDistance are the minimum and max-
imum values of the distances to all the nodes in the “local”
set.

After each node has converged to a point in space, we
use a hierarchical clustering algorithm to perform the actual
grouping of points-nodes into clusters-communities. The main
advantage of the hierarchical clustering algorithms is that

the number of clusters need not be specified a priory, and
problems due to initialization and local minima do not arise
[6]. The following procedure is executed: First, each node is
considered as a (singleton) cluster. In addition, to make the
procedure completely distributed, each node-cluster is aware
of the location only of its neighboring node-clusters. Then,
the following loop is executed repeatedly, until no appropriate
pair of clusters can be located: Given a pair of neighboring
clusters A and B, if A is B’s closest neighbor and likewise B
is A’s closest neighbor, then those two clusters are merged in
the following fashion: the merged cluster contains the union
of the neighbors of A and B, its position is calculated as the
weighted (based on the population of nodes in each cluster A
and B) average of the positions of A and B.

II. EXPERIMENTAL RESULTS

We have created a variety of benchmark graphs with known
community structure to test the accuracy of our algorithm.
Our benchmark graphs were generated randomly given the
following set of parameters: the number of nodes N of
the graph (1000, 5000, 10000), the number of communities
Comm of the graph (5, 10, 20, 40, 80), the ratio of local
links to node degree local/degree (0.55, 0.65, 0.75, 0.85),
and the (average) degree of nodes degree (10, 20, 30, 40).
Even though the number of the nodes, the number of the
communities and the degree of the nodes are parameters of
the construction of the graph, the degree of each node as well
as the number of nodes in a single community varies based
on a pareto distribution. This enables us to create graphs of
community sizes and individual degrees varying up to an order
of magnitude. In total, we created a number of 208 graphs.

We compared the five algorithms using two accuracy-
related metrics found mostly used in the literature, to compare
the calculated communities with the correct ones. The first is a
simple accuracy metric (number of nodes in the intersection of
the two sets divided by the number of nodes in their union). We
also used the Normalized Mutual Information (NMI) metric
to evaluate the correctness of the detected communities [7]. In
both cases, a value close to one indicates correct detection of
the communities of the graph.

Fig. 1, 2, 3 show the performance of a single algorithm
using the accuracy metric, on all 208 graphs. Since there
are four types of parameters which describe the graphs of
the experiments, we decided to used the two most important
factors which affect the algorithms’ performances, in order to
plot the accuracies in 3D graphs. The first of these factors is
always the local links to node degree value, which dictates how
strong the communities in the graph are. The second factor in
some cases is the number of communities in the graph, while
in other cases is the (average) density of these communities.
Thus, we plot, for each algorithm and accuracy metric, two
3D graphs using, in one case, the number of communities as
the values on one the axes and the average density on the
other. Each accuracy value in the graphs is the average of
the accuracies of all the experiments based on the benchmark
graphs with the same value on the aforementioned factors.

This research has been co-financed by the European Union
(European Social Fund - ESF) and Greek national funds
through the Operational Program “Education and Lifelong



20
40

60
80

0.5
0.6

0.7
0.8

0.9
0

0.5

1

 

Comm

SCCD

local/degree
 0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
0

0.2

0.4

0.6

0.8

1

 

density

SCCD

local/degree
 0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Fig. 1: (a),(b) The mean value of accuracy under (a) different ratios of total degree to local links (local/degree) and number
of communities (Comm) and (b) total degree to local links (local/degree) and densities for our algorithm.

20
40

60
80

0.5
0.6

0.7
0.8

0.9
0

0.2

0.4

0.6

0.8

1

 

Comm

Blondel

local/degree
 0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
0

0.5

1

 

density

Blondel

local/degree
 0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Fig. 2: (a),(b) The mean value of accuracy under (a) different ratios of total degree to local links (local/degree) and number
of communities (Comm) and (b) total degree to local links (local/degree) and densities for the Blondel algorithm.

20
40

60
80

0.5
0.6

0.7
0.8

0.9
0

0.2

0.4

0.6

0.8

1

 

Comm

Infomap

local/degree

(a)

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
0

0.2

0.4

0.6

0.8

1

 

density

Infomap

local/degree
 0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Fig. 3: (a),(b) The mean value of accuracy under (a) different ratios of total degree to local links (local/degree) and number
of communities (Comm) and (b) total degree to local links (local/degree) and densities for the Infomap algorithm.

Learning” of the National Strategic Reference Framework
(NSRF) - Research Funding Program: ARCHIMEDE III-TEI-
Crete-P2PCOORD.

REFERENCES

[1] M. Girvan and M. E. J. Newman, “Community structure in social and
biological networks,” Proc of the National Academy of Sciences of the
United States of America, vol. 99, no. 12, pp. 7821–7826, June 2002.

[2] A. Lancichinetti, S. Fortunato, and J. Kertész, “Detecting the overlap-
ping and hierarchical community structure in complex networks,” New
J of Physics, vol. 11, no. 3, pp. 033 015+, March 2009.

[3] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” J of Statistical Mechanics:
Theory and Experiment, vol. 2008, no. 10, 2008.

[4] M. Rosvall and C. T. Bergstrom, “An information-theoretic framework
for resolving community structure in complex networks,” Proc of the
National Academy of Sciences, vol. 104, no. 18, pp. 7327–7331, 2007.

[5] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A decentralized
network coordinate system,” in Proc of the ACM SIGCOMM ’04
Conference, August 2004.

[6] H. Frigui and R. Krishnapuram, “A robust competitive clustering
algorithm with applications in computer vision,” IEEE Trans on Pattern
Analysis and Machine Intelligence, vol. 21, no. 5, pp. 450–465, 1999.

[7] A. Strehl, J. Ghosh, and C. Cardie, “Cluster ensembles - a knowledge
reuse framework for combining multiple partitions,” J of Machine
Learning Research, vol. 3, pp. 583–617, 2002.


