Star formation relations CO SLEDs across the J-ladder and redshift

Thomas R. Greve (University College London)

DeMoGas is:

Manolis Xilouris (NOA) Ioanna Leonid (NOA) Padelis Papadopoulos (Cardiff) Paul van der Werf (Leiden) Axel Weiss (MPIfR) Zhi-Yu Zhang (PMO/ROE)

http://demogas.astro.noa.gr/

Nottingham February 2014

Why are star formation relations interesting?

IC342

THINGS

Why are star formation relations interesting?

IC342

¹²CO J=1-0 (molecular gas)

THINGS NRAO 12m

Why are star formation relations interesting?

IC342

¹²CO J=1-0 (molecular gas)

IR emission (star formation)

THINGS NRAO 12m Spitzer 70um

On kpc scales, SFR is related to H₂ gas rather than HI

Star formation relations in our Galaxy

Star formation relations in our Galaxy

Star formation relations in our Galaxy

KINETIC TEMPERATURE

Genzel+92

'The Schmidt-Kennicutt law'

<u>Schmidt (1959):</u>

$$\rho_{\rm SFR} \sim \rho^N \qquad N \sim 2$$

Kennicutt (1998): (If constant scale height)

$$\Sigma_{\rm SFR} = A \Sigma_{\rm gas}^N \qquad N \sim 1.4$$

Issues:

- X(CO)
- Metallicity
- H₂/(H₂+HI) fraction

• .

Resolved on sub-kpc scales

<u>100pc-1kpc scales:</u>

- SFR-H₂ correlation
- <u>< 50-100pc scales:</u>
 - 'break-down' due to undersampling
- H₂-HI transition:
 - ~10M_☉ pc⁻²
 - No SFR-HI correlation

Issues:

- X(CO)
- Metallicity
- H₂/(H₂+HI) fraction

• .

SINGS, THINGS, KINGFISH surveys...

Bi-modal SF laws? З Sequence of Starburgts SMGs • Starburst mergers vs. quiescent disks • Enhanced SFE in mergers 2 8 • Compact vs. extended gas configuration • ISM energy density (UV, CR, turb.) Evidence for bi-modal SF in FIR-line deficits? i snce of Disks Disk/ 10 [C II] 158µm [O I] 145µm [O III] 88µm [N II] 122µm FIR FIR FIR FIR Quiescent 10-4 10 10 Merger/ Line flux / FIR SB -10-4 10 [O I] 63µm [N III] 57µm [O III] 52µm FIR FIR FIR 10 HII galaxy INER 10-3 Seyfert & QSO ldi+10 Blue Compact Dwarf Unclassified 10 High-z galaxy NGC 4418 Gracia-Carpio+11 Arp 220 10-4 10³ 10³ 10⁰ 10¹ 10² 10³ 100 10⁰ 10^{2} 10¹ 10¹ 10 10² 10^{3} 10 10²

 $L_{FIR}/M_{H_2}[L_{Sun}/M_{Sun}] ~\sim \text{SFE}$

Bi-modal SF laws?

- Starburst mergers vs. quiescent disks
- Enhanced SFE in mergers
- Compact vs. extended gas configuration
- ISM energy density (UV, CR, turb.)

Issues:

- Two separate X(CO) used!
- Heterogenous samples
- Poorly sampled SEDs / L_{IR} uncertain
- Sizes are uncertain at high-z
- AGN contamination harder to assess
- Mixing J-transitions

Bi-modal SF laws?

- Starburst mergers vs. quiescent disks
- Enhanced SFE in mergers
- Compact vs. extended gas configuration
- ISM energy density (UV, CR, turb.)

Issues:

- Two separate X(CO) used!
- Heterogenous samples
- Poorly sampled SEDs / LIR uncertain
- Sizes are uncertain at high-z
- AGN contamination harder to assess
- Mixing J-transitions

Proxy-relations

Important side-note:

Kennicutt-Schmidt law: $\Sigma_{\rm SFR} = A \Sigma_{\rm gas}^N$

Proxy: luminosity relation $\log L_{\rm IR} = \alpha \log L_{\rm mol} + \beta$

• Size measurements difficult: few interferometric or single-dish on-the-fly CO/HCN/CS maps exist.

• CO (and HCN/CS) conversion to gas mass dubious, and requires extensive modeling.

 Dense gas mass fraction require multi-line observations and multiphase (LVG) modeling (Greve et al. 2009)

Dense gas proxy-relations

Important side-note:

Kennicutt-Schmidt law: $\Sigma_{\rm SFR} = A \Sigma_{\rm gas}^N$

Proxy: luminosity relation $\log L_{\rm IR} = \alpha \log L_{\rm mol} + \beta$

• Size measurements difficult: few interferometric or single-dish on-the-fly CO/HCN/CS maps exist.

• CO (and HCN/CS) conversion to gas mass dubious, and requires extensive modeling.

 Dense gas mass fraction require multi-line observations and multiphase (LVG) modeling (Greve et al. 2009)

- (U)LIRGs have higher HCN/CO (i.e. dense gas fractions) than normal spirals.
- This explains the super-linear IR-CO relations ('mixing' populations)
- Bimodal IR-CO relations, with f_{dense} setting the IR-CO normalisation (β)

Gracia-Carpio+12

Theory - a universal SF law?

 $t_{\rm ff} \propto \rho^{-1/2}$ $SFR \sim \frac{M_{\rm gas}}{t_{\rm ff}} \propto \rho^{1.5}$ $\sim \frac{1\%}{\tau_{\rm ff}}$ $\Sigma_{\rm SFR} = f_{\rm H_2} \epsilon_{\rm ff} \frac{\Sigma_{\rm gas}}{\tau_{\rm ff}}$

 SF laws are set by <u>local</u> conditions/ time-scales (not global, e.g. t_{dyn}, t_{orb})

- Only gravity (plus SF efficiency)
- Explains observed slopes
- Different scale heights (h) removes bi-modality
- ...but observational determinations of h are highly uncertain

Predictions by the only two models on the market

Krumholz & McKee+05; Krumholz & Thompson+07; Narayanan+08

• Both assume an underlying Kennicutt-Schmidt law: $ho_{
m SFR} \propto
ho_{
m gas}^{1.5}$

• Highly turbulent (*Mach number*) ISM, where SF occurs in virialized, (near-)isothermal gas clouds at low temps. (T_k ~10-30K)

• thus valid L_{IR} -L'_{mol} predictions over a large density range, but only applicable for lines with $E_J/k_B < 30K$, i.e low-J lines of CO and heavy rotor molecules

Predictions by the only two models on the market

Krumholz & McKee+05; Krumholz & Thompson+07; Narayanan+08

• Both assume an underlying Kennicutt-Schmidt law: $ho_{
m SFR} \propto
ho_{
m gas}^{1.5}$

• Highly turbulent (*Mach number*) ISM, where SF occurs in virialized, (near-)isothermal gas clouds at low temps. (T_k ~10-30K)

• thus valid L_{IR} -L'_{mol} predictions over a large density range, but only applicable for lines with $E_J/k_B < 30K$, i.e low-J lines of CO and heavy rotor molecules

Open questions

• what is the nature of the SF laws wrt the dense (>10⁴cm⁻³) gas, i.e. the ISM phase that is actively forming the stars?

- departure from linearity in the SF-law slope (a) ?
- changes in the normalization (β)?
- what determines a and β ?

• can we tie the observed SF laws to physical mechanisms governing/regulating star formation, and if so what are they?

• are the SF laws truly universal, i.e. are they the same on GMC-scales, entire galaxies at low- and high-z, different types of galaxies (disks, starbursts)?

Methodology

• we study the SF laws for the entire CO rotational ladder up to J=13-12 for a large, well-defined sample of local IR-luminous galaxies (U/LIRGs) as well as high-z dusty star forming galaxies (DSFGs)

• we also make use of recent SF law results inferred from heavy rotor molecules like CS and HCN (Zhang et al., 2014)

Zhang et al. (2014) Greve et al., submitted

Observing the CO ladder in local (U)LIRGs

Herschel

z < 0.1 (U)LIRG sample

<u>A Ground-Based Multi-Line Survey of local (U)LIRGs</u> 55 sources from IRAS BGS (z < 0.1):

- CO 1-0, 2-1, 3-2, 4-3
- HCN 1-0, 2-1, 3-2, 4-3
- HCO+ 1-0
- CS 2-1, 3-2, 5-4, 7-6 (Zhang+14)

>350hrs. This is the largest multi-line survey to date + literature data. Papadopoulos+12

• Full CO rotational ladder, dense+FIR lines

- Comprehensive ISM characterization
- Disentangling Starburst vs. AGN

<u>Herschel Comprehensive (U)LIRG Emission Survey</u> HERCULES (P.I.: van der Werf). 29 sources from IRAS BGS (z < 0.1):

- CO 4-3 to 14-13
- [CI] 369µm and 609µm
- H₂O lines

100hrs. van der Werf+10

Observing the CO ladder in local (U)LIRGs

JCMT

Molecular lines observed in NGC6240

<u>A Ground-Based Multi-Line Survey of local (U)LIRGs</u> 55 sources from IRAS BGS (z < 0.1):

- CO 1-0, 2-1, 3-2, 4-3
- HCN 1-0, 2-1, 3-2, 4-3
- HCO+ 1-0
- CS 2-1, 3-2, 5-4, 7-6 (Zhang+14)

>350hrs. This is the largest multi-line survey to date + literature data. Papadopoulos+12

• Full CO rotational ladder, dense+FIR lines

- Comprehensive ISM characterization
- Disentangling Starburst vs. AGN

<u>Herschel Comprehensive (U)LIRG Emission Survey</u>HERCULES (P.I.: van der Werf).29 sources from IRAS BGS (z < 0.1):

- CO 4-3 to 14-13
- [CI] 369µm and 609µm
- H₂O lines

100hrs. van der Werf+10

Observing the CO ladder in local (U)LIRGs

<u>A Ground-Based Multi-Line Survey of local (U)LIRGs</u> 55 sources from IRAS BGS (z < 0.1):

- CO 1-0, 2-1, 3-2, 4-3
- HCN 1-0, 2-1, 3-2, 4-3
- HCO+ 1-0
- CS 2-1, 3-2, 5-4, 7-6 (Zhang+14)

>350hrs. This is the largest multi-line survey to date + literature data. Papadopoulos+12

Full CO rotational ladder, dense+FIR lines

- Comprehensive ISM characterization
- Disentangling Starburst vs. AGN

<u>Herschel Comprehensive (U)LIRG Emission Survey</u> HERCULES (P.I.: van der Werf). 29 sources from IRAS BGS (z < 0.1):

- CO 5-4 to 14-13
- [CI] 369µm and 609µm
- H₂O lines

100hrs. van der Werf+10

Papadopoulos et al., accepted; Zhang et al., in prep.

SEDs and LIR of local (U)LIRGs

- Compilation of pan-chromatic continuum data (optical, mid-IR, PACS+SPIRE, IRAS,...)
- SED fitting with modified CIGALE (Burgarella+05) using Chary & Elbaz+01 and Dale & Helou+02 templates
- We adopt FIR (50-300 μ m) luminosities (clean compared to 8-1000 μ m) (but no differences...)

- Is CO IR beam-matching an issue? NO
- SPIRE-FTS beam FWHM range ~16"-42" Ground-based FWHM range ~11"-14"
- (U)LIRGs are generally compact (<8"). We have CO(1-0)/IR/cm sizes for all our sources all within the CO beams (Papadopoulos+12)

• For sub-LIRG sources beam-correction is crucial!

SEDs and LIR of local (U)LIRGs

- Compilation of pan-chromatic continuum data (optical, mid-IR, PACS+SPIRE, IRAS,...)
- SED fitting with modified CIGALE (Burgarella+05) using Chary & Elbaz+01 and Dale & Helou+02 templates
- We adopt FIR (50-300 μ m) luminosities (clean compared to 8-1000 μ m) (but no differences...)

- Is CO IR beam-matching an issue? NO
- SPIRE-FTS beam FWHM range ~16"-42" Ground-based FWHM range ~11"-14"
- (U)LIRGs are generally compact (<8"). We have CO(1-0)/IR/cm sizes for all our sources all within the CO beams (Papadopoulos+12)
- For sub-LIRG sources beam-correction is crucial!

Observing the CO ladder in high-z (U)LIRGs

<u>Dusty Star Forming Galaxies (DSFGs):</u> • A compilation of all (sub)mm-selected z > 1DSFGs with CO line detections.

- Obvious AGN discarded
- Multiple observations of the same CO transition were averaged, and intrinsic line luminosities recalculated
- A total of 59 unlensed DSFGs and 17 lensed DSFGs (published as of Jan 2014)
- ~1.5 decades worth of work!

IRAM PdBI (Europe)

$\begin{array}{c} & & & \\ & &$

Frayer+98+99; Neri+03; Greve+05; Tacconi+06,+08; Hainline+06; Riechers+09+13; Ivison+11; Bothwell+11+13; Carilli+09+12 etc etc

HERMES J105751.1+573027 z=2.95

SEDs and L_{IR} of high-z DSFGs

• Painstaking effort to collect pan-chromatic continuum data

- CIGALE fits, identical to local (U)LIRG fits
- Only sources with >3 FIR/submm data points across the dust peak, and with good overall CIGALE fits were included in the analysis

• Final sample: 49 DSFGs (lensed+unlensed)

Finding the correct counterpart can be a nightmare...

SEDs and LIR of high-z DSFGs

• Painstaking effort to collect pan-chromatic continuum data

- CIGALE fits, identical to local (U)LIRG fits
- Only sources with >3 FIR/submm data points across the dust peak, and with good overall CIGALE fits were included in the analysis

• Final sample: 49 DSFGs (lensed+unlensed)

SEDs and LIR of high-z DSFGs

• Painstaking effort to collect pan-chromatic continuum data

- CIGALE fits, identical to local (U)LIRG fits
- Only sources with >3 FIR/submm data points across the dust peak, and with good overall CIGALE fits were included in the analysis

• Final sample: 49 DSFGs (lensed+unlensed)

 $\log(L_{IR})$ [L₀]

 $\log(L_{IR})$ [L₀]

 $\log(L_{IR})$ [L_o]

L_{IR}-L'_{mol} slope vs. n_{crit}(mol)

LIR-L'mol slope vs. ncrit(mol)

Greve, in submitted.

Greve, in submitted.

LIR-L'mol slope vs. ncrit(mol)

LIR-L'mol slope vs. ncrit(mol)

Radiation pressure and the Eddington limit

• The maximal (L_{IR}/M_{dense})_{Edd} ~ 500L☉/M☉ set by radiation pressure (Scoville & Polletta 2001)

• IR-CO relation can be derived in the case of Eddington limited ('maximal') star formation (Andrews & Thompson 2011)

$$L_{\rm Edd} = 4\pi G c \kappa^{-1} X_{\rm CO} L_{\rm CO}'$$

normalisation (β)

- Local (U)LIRGs and high-z DSFGs are highly dust-obscured and have nearly (SFR)_{Edd} <u>on a global scale</u>
- \bullet In normal galaxies (SFR)_{Edd} occurs deep inside individual clouds, but on a global scale the SFR is diluted by f_{dense}

• Super-linear slopes come about from varying $f_{dense}(L_{IR})$, or rather varying $\beta(L_{IR})$

1014 Super Eddington 1013 $L_{edd} \propto X_{co}^{ulirg} L_{co}' / \kappa_{fir}$ **ULIRGs/DSFGs** 1012 10^LlR (L_☉) LIRGs •diluted' by a factor $f_{dense} = M_{dense}/M_{tot}$ 1010 Normal galaxies Sub Eddington 109 108 109 1010 1011 1012 107 L'_{co} (K km s⁻¹ pc²)

Note the correlations are linear!

Bringing back bi-modal (global) CO SF laws!

Andrews & Thompson (2011)

Radiation pressure and the Eddington limit

• The maximal (L_{IR}/M_{dense})_{Edd} ~ 500L☉/M☉ set by radiation pressure (Scoville & Polletta 2001)

Note the correlation is linear! IR-HCN relation can be derived in the case of 1014 Eddington limited ('maximal') star formation Super (Andrews & Thompson 2011) Eddington $L_{\rm Edd} = 4\pi G c \kappa^{-1} X_{\rm HCN} L'_{\rm HCN}$ 1013 $L_{Edd} \propto X_{HCN} L'_{HCN} / \kappa_{FIR}$ **ULIRGs/DSFGs** normalisation (β) 1012 L_{IR} (L_{\odot}) LIRGs 1011 The density regimes probed by HCN (and CS) are (SFR)_{Edd} regions, regardless of which galaxy the region resided in. 1010 Normal galaxies A universal, linear dense SF law Sub Eddington

109

106

107

108

 L'_{HCN} (K km s⁻¹ pc²)

- Employs self-gravity and feedback
- Explains low-J CO and dense gas slopes
- Dense tracers are counting SF 'units'

Andrews & Thompson (2011)

1010

1011

10⁹

What about the high-J CO lines?

What about the high-J CO lines?

What about the high-J CO lines?

The decrease in α and increase in β at high-J can be explained by a simple argument:

$$\alpha_{\mathrm{CO}_{\mathrm{J},\mathrm{J}-1}} = \frac{d\log L_{\mathrm{IR}}}{d\log L'_{\mathrm{HCN}_{1,0}}} \times \frac{d\log L'_{\mathrm{HCN}_{1,0}}}{d\log L'_{\mathrm{CO}_{1,0}}}$$
$$= \alpha_{\mathrm{HCN}_{1,0}} \left(1 + \frac{d\log l_{\mathrm{dense}_{\mathrm{J},\mathrm{J}-1}}}{d\log L'_{\mathrm{CO}_{\mathrm{J},\mathrm{J}-1}}}\right)$$

$$l_{\text{dense}_{\mathrm{J},\mathrm{J}-1}} = L'_{\mathrm{HCN}_{1,0}}/L'_{\mathrm{CO}_{\mathrm{J},\mathrm{J}-1}}$$

determines deviations in $\alpha_{COJ,J-1}$ from unity and depends on both the dense gas fraction and the global excitation

<u>Low-J</u>: $I_{dense} \sim dense$ gas fraction $\sim constant$ for a 'homogeneous' sample and so $\alpha \sim 1$

<u>High-J:</u> $I_{dense} \sim R_{d,d-w} = M_{dense}/M_{dense-warm} > 1$

Evidence of a new warm, dense gas phase in (U)LIRGs

• Evidence for an increasing mass and/or excitation of the warm and dense (d-w) gas phase relative to the dense gas reservoir (d)

• Indicates the presence of a significant warm ($T_k > 100K > T_{dust}$) and dense (>10⁴cm⁻³) gas component that is not tied to the star formation via UV/optical heating. Suggestive of alternative heating mechanisms (cosmic rays, turbulence/shocks)

Evidence of a new warm, dense gas phase in (U)LIRGs

- A generic characteristic of low- and high-z merger/starbursts:
 - *global* CO SLEDs remain nearly flat out to J=13-12!
 - Radically different from MW/quiescent CO SLEDs
- This is impossible to maintain on a *global* scale simply by UV-photons

Caveats and possible biases

- AGN contamination
 - high IR luminosities (bias α high)
 - XDRs 'boosted' high-J lines (bias α low)
 - Removed AGN

- Differential lensing (Blain+98; Hezaveh+12; Serjeant+12)
 - high IR luminosities (bias α high)
 - XDRs 'boosted' high-J lines (bias α low)
 - But correlations unchanged if we discard lensed DSFGs

• Small dynamical range in luminosities for high-J lines

• Delineated LIR-LCO relations across the full CO J-ladder for a statistically significant sample of (U)LIRGs

• Full multi-line, multi-phase LVG modeling of the ISM

• Explore SFR - M_{dense} relations instead of luminosity relations (work in progress) based on *accurate source-by-source M_{dense} estimates!*

12CO & CI flux density NGC6240

CO (Herschel)

CI (370 and 609µm)

CO (ground-based telescopes)

10

co [Jy km/s]

5000

• Spatially resolved high-J CO, HCN, CS observations with ALMA. Resolved dense gas SF relations.

Frequency (GHz)

- For the highest-J lines, (>1THz), single-dish telescopes will remain important
- Herschel Science Archive (large part still unexplored), and SPICA, CCAT

The End

Thanks for listening, ...and sorry for missing the plane!

Star formation relations in the high density regime

Luminosity (IR-CO) relations at high redshifts

 $\alpha = 1.15 \pm 0.12$

Slope determinations:

- Greve+05 (12 SMGs + LIRGs): $\alpha = 1.5 \pm 0.3$
- Iono+09 (SMGs+LIRGs, CO(3-2) only): $\alpha = 1.10 \pm 0.03$
- Genzel+10 (10 SMGs + LIRGs):
- Bothwell+13 (>30 SMGs + LIRGs): $\alpha = 1.20 \pm 0.13$
- Ivison+11 (SMGs+LIRGs, CO(1-0) only): $\alpha = 0.89 \pm 0.04$

Bi-modal SF laws?

- Starburst mergers vs. quiescent disks
- Enhanced SFE in mergers
- Compact vs. extended gas configuration
- ISM energy density (UV, CR, turb.)

<u>Issues:</u>

- Heterogenous samples
- \bullet Poorly sampled SEDs / L_{IR} uncertain
- AGN contamination harder to assess
- Mixing J-transitions

Luminosity (IR-CO) relations of local galaxies IR-CO(1-0)

Luminosity (IR-dense gas) relations of local galaxies IR-HCN/HCO+(3-2)

- Evidence for sub-linear slopes at high densities?
- We would expect linear relations at even higher n_{crit} than HCN(1-0)

Luminosity (IR-dense gas) relations of local galaxies IR-HCN/HCO+(3-2)

• Evidence for sub-linear slopes at high densities?

Small, heterogenous samples

Issues:

Optical Class:

α

• HCO+ ionic molecule, sensitive to e- abundance

Not corrected for IR-mol beam matching

Luminosity (IR-dense gas) relations of local galaxies IR-HCN(1-0)

- (U)LIRGs have higher HCN/CO (i.e. dense gas fractions) than normal spirals.
- This explains the super-linear IR-CO relations ('mixing' populations)
- Bimodal IR-CO relations, with fdense setting the IR-CO normalisation (R)

