
Algorithms
Notes for ProfessionalsAlgorithms

Notes for Professionals

GoalKicker.com
Free Programming Books

Disclaimer
This is an unocial free book created for educational purposes and is

not aliated with ocial Algorithms group(s) or company(s).
All trademarks and registered trademarks are

the property of their respective owners

200+ pages
of professional hints and tricks

http://goalkicker.com
http://goalkicker.com

Contents
About 1 ...

Chapter 1: Getting started with algorithm 2 ...
Section 1.1: A sample algorithmic problem 2 ...
Section 1.2: Getting Started with Simple Fizz Buzz Algorithm in Swift 2 ..

Chapter 2: Algorithm Complexity 5 ...
Section 2.1: Big-Theta notation 5 ..
Section 2.2: Comparison of the asymptotic notations 6 ..
Section 2.3: Big-Omega Notation 6 ..

Chapter 3: Graph 8 ...
Section 3.1: Storing Graphs (Adjacency Matrix) 8 ...
Section 3.2: Introduction To Graph Theory 11 ..
Section 3.3: Storing Graphs (Adjacency List) 15 ...
Section 3.4: Topological Sort 17 ..
Section 3.5: Detecting a cycle in a directed graph using Depth First Traversal 18 ...
Section 3.6: Thorup's algorithm 19 ...

Chapter 4: Graph Traversals 21 ...
Section 4.1: Depth First Search traversal function 21 ...

Chapter 5: Dijkstra’s Algorithm 22 ...
Section 5.1: Dijkstra's Shortest Path Algorithm 22 ...

Chapter 6: A* Pathfinding 27 ...
Section 6.1: Introduction to A* 27 ...
Section 6.2: A* Pathfinding through a maze with no obstacles 27 ..
Section 6.3: Solving 8-puzzle problem using A* algorithm 34 ..

Chapter 7: A* Pathfinding Algorithm 37 ..
Section 7.1: Simple Example of A* Pathfinding: A maze with no obstacles 37 ..

Chapter 8: Dynamic Programming 44 ..
Section 8.1: Edit Distance 44 ..
Section 8.2: Weighted Job Scheduling Algorithm 44 ..
Section 8.3: Longest Common Subsequence 48 ...
Section 8.4: Fibonacci Number 49 ..
Section 8.5: Longest Common Substring 50 ..

Chapter 9: Kruskal's Algorithm 51 ..
Section 9.1: Optimal, disjoint-set based implementation 51 ...
Section 9.2: Simple, more detailed implementation 52 ..
Section 9.3: Simple, disjoint-set based implementation 52 ..
Section 9.4: Simple, high level implementation 52 ..

Chapter 10: Greedy Algorithms 54 ...
Section 10.1: Human Coding 54 ...
Section 10.2: Activity Selection Problem 57 ..
Section 10.3: Change-making problem 59 ...

Chapter 11: Applications of Greedy technique 61 ...
Section 11.1: Oine Caching 61 ..
Section 11.2: Ticket automat 69 ...
Section 11.3: Interval Scheduling 72 ...
Section 11.4: Minimizing Lateness 76 ...

Chapter 12: Prim's Algorithm 79 ...
Section 12.1: Introduction To Prim's Algorithm 79 ..

Chapter 13: Bellman–Ford Algorithm 87 ..
Section 13.1: Single Source Shortest Path Algorithm (Given there is a negative cycle in a graph) 87
Section 13.2: Detecting Negative Cycle in a Graph 90 ..
Section 13.3: Why do we need to relax all the edges at most (V-1) times 92 ...

Chapter 14: Line Algorithm 95 ..
Section 14.1: Bresenham Line Drawing Algorithm 95 ..

Chapter 15: Floyd-Warshall Algorithm 98 ...
Section 15.1: All Pair Shortest Path Algorithm 98 ...

Chapter 16: Catalan Number Algorithm 101 ..
Section 16.1: Catalan Number Algorithm Basic Information 101 ...

Chapter 17: polynomial-time bounded algorithm for Minimum Vertex Cover 103
Section 17.1: Algorithm Pseudo Code 103 ...

Chapter 18: Multithreaded Algorithms 104 ...
Section 18.1: Square matrix multiplication multithread 104 ..
Section 18.2: Multiplication matrix vector multithread 104 ...
Section 18.3: merge-sort multithread 104 ..

Chapter 19: Knuth Morris Pratt (KMP) Algorithm 106 ...
Section 19.1: KMP-Example 106 ...

Chapter 20: Edit Distance Dynamic Algorithm 108 ..
Section 20.1: Minimum Edits required to convert string 1 to string 2 108 ...

Chapter 21: Online algorithms 111 ..
Section 21.1: Paging (Online Caching) 111 ...

Chapter 22: Big-O Notation 116 ...
Section 22.1: A Simple Loop 116 ..
Section 22.2: A Nested Loop 116 ..
Section 22.3: O(log n) types of Algorithms 117 ..
Section 22.4: An O(log n) example 119 ..

Chapter 23: Sorting 120 ..
Section 23.1: Stability in Sorting 120 ...

Chapter 24: Bubble Sort 121 ...
Section 24.1: Bubble Sort 121 ..
Section 24.2: Implementation in C & C++ 121 ...
Section 24.3: Implementation in C# 122 ..
Section 24.4: Python Implementation 123 ...
Section 24.5: Implementation in Java 124 ...
Section 24.6: Implementation in Javascript 124 ...

Chapter 25: Merge Sort 126 ...
Section 25.1: Merge Sort Basics 126 ...
Section 25.2: Merge Sort Implementation in Go 127 ..
Section 25.3: Merge Sort Implementation in C & C# 127 ...
Section 25.4: Merge Sort Implementation in Java 129 ..
Section 25.5: Merge Sort Implementation in Python 130 ...
Section 25.6: Bottoms-up Java Implementation 131 ...

Chapter 26: Insertion Sort 133 ..
Section 26.1: Haskell Implementation 133 ..

Chapter 27: Bucket Sort 134 ..

Section 27.1: C# Implementation 134 ...

Chapter 28: Quicksort 135 ..
Section 28.1: Quicksort Basics 135 ..
Section 28.2: Quicksort in Python 137 ..
Section 28.3: Lomuto partition java implementation 137 ..

Chapter 29: Counting Sort 139 ...
Section 29.1: Counting Sort Basic Information 139 ...
Section 29.2: Psuedocode Implementation 139 ..

Chapter 30: Heap Sort 141 ...
Section 30.1: C# Implementation 141 ...
Section 30.2: Heap Sort Basic Information 141 ...

Chapter 31: Cycle Sort 143 ..
Section 31.1: Pseudocode Implementation 143 ..

Chapter 32: Odd-Even Sort 144 ..
Section 32.1: Odd-Even Sort Basic Information 144 ..

Chapter 33: Selection Sort 147 ...
Section 33.1: Elixir Implementation 147 ...
Section 33.2: Selection Sort Basic Information 147 ...
Section 33.3: Implementation of Selection sort in C# 149 ..

Chapter 34: Trees 151 ..
Section 34.1: Typical anary tree representation 151 ..
Section 34.2: Introduction 151 ...
Section 34.3: To check if two Binary trees are same or not 152 ...

Chapter 35: Binary Search Trees 155 ...
Section 35.1: Binary Search Tree - Insertion (Python) 155 ...
Section 35.2: Binary Search Tree - Deletion(C++) 157 ...
Section 35.3: Lowest common ancestor in a BST 158 ..
Section 35.4: Binary Search Tree - Python 159 ...

Chapter 36: Check if a tree is BST or not 161 ...
Section 36.1: Algorithm to check if a given binary tree is BST 161 ..
Section 36.2: If a given input tree follows Binary search tree property or not 162 ...

Chapter 37: Binary Tree traversals 163 ...
Section 37.1: Level Order traversal - Implementation 163 ...
Section 37.2: Pre-order, Inorder and Post Order traversal of a Binary Tree 164 ..

Chapter 38: Lowest common ancestor of a Binary Tree 166 ...
Section 38.1: Finding lowest common ancestor 166 ...

Chapter 39: Searching 167 ..
Section 39.1: Binary Search 167 ..
Section 39.2: Rabin Karp 168 ..
Section 39.3: Analysis of Linear search (Worst, Average and Best Cases) 169 ..
Section 39.4: Binary Search: On Sorted Numbers 171 ...
Section 39.5: Linear search 171 ..

Chapter 40: Substring Search 173 ...
Section 40.1: Introduction To Knuth-Morris-Pratt (KMP) Algorithm 173 ...
Section 40.2: Introduction to Rabin-Karp Algorithm 176 ...
Section 40.3: Python Implementation of KMP algorithm 179 ..
Section 40.4: KMP Algorithm in C 180 ..

Chapter 41: Breadth-First Search 183 ..

Section 41.1: Finding the Shortest Path from Source to other Nodes 183 ..
Section 41.2: Finding Shortest Path from Source in a 2D graph 189 ..
Section 41.3: Connected Components Of Undirected Graph Using BFS 190 ...

Chapter 42: Depth First Search 195 ..
Section 42.1: Introduction To Depth-First Search 195 ...

Chapter 43: Hash Functions 200 ..
Section 43.1: Hash codes for common types in C# 200 ...
Section 43.2: Introduction to hash functions 201 ..

Chapter 44: Travelling Salesman 203 ..
Section 44.1: Brute Force Algorithm 203 ..
Section 44.2: Dynamic Programming Algorithm 203 ...

Chapter 45: Knapsack Problem 205 ..
Section 45.1: Knapsack Problem Basics 205 ..
Section 45.2: Solution Implemented in C# 205 ..

Chapter 46: Matrix Exponentiation 207 ...
Section 46.1: Matrix Exponentiation to Solve Example Problems 207 ...

Chapter 47: Equation Solving 211 ..
Section 47.1: Linear Equation 211 ..
Section 47.2: Non-Linear Equation 213 ..

Chapter 48: Longest Common Subsequence 217 ..
Section 48.1: Longest Common Subsequence Explanation 217 ..

Chapter 49: Longest Increasing Subsequence 222 ...
Section 49.1: Longest Increasing Subsequence Basic Information 222 ..

Chapter 50: Dynamic Time Warping 225 ..
Section 50.1: Introduction To Dynamic Time Warping 225 ..

Chapter 51: Pascal's Triangle 229 ...
Section 51.1: Pascal triangle in C 229 ..

Chapter 52: Fast Fourier Transform 230 ...
Section 52.1: Radix 2 FFT 230 ..
Section 52.2: Radix 2 Inverse FFT 235 ..

Chapter 53: Algo:- Print a m*n matrix in square wise 237 ..
Section 53.1: Sample Example 237 ..
Section 53.2: Write the generic code 237 ...

Chapter 54: Check two strings are anagrams 238 ..
Section 54.1: Sample input and output 238 ..
Section 54.2: Generic Code for Anagrams 239 ...

Chapter 55: Applications of Dynamic Programming 241 ...
Section 55.1: Fibonacci Numbers 241 ...

Appendix A: Pseudocode 244 ...
Section A.1: Variable aectations 244 ..
Section A.2: Functions 244 ...

Credits 245 ..

You may also like 247 ..

Algorithms Notes for Professionals 1

About

Please feel free to share this PDF with anyone for free,
latest version of this book can be downloaded from:

http://GoalKicker.com/AlgorithmsBook

This Algorithms Notes for Professionals book is compiled from Stack Overflow
Documentation, the content is written by the beautiful people at Stack Overflow.
Text content is released under Creative Commons BY-SA, see credits at the end

of this book whom contributed to the various chapters. Images may be copyright
of their respective owners unless otherwise specified

This is an unofficial free book created for educational purposes and is not
affiliated with official Algorithms group(s) or company(s) nor Stack Overflow. All

trademarks and registered trademarks are the property of their respective
company owners

The information presented in this book is not guaranteed to be correct nor
accurate, use at your own risk

Please send feedback and corrections to web@petercv.com

http://goalkicker.com/AlgorithmsBook
https://archive.org/details/documentation-dump.7z
https://archive.org/details/documentation-dump.7z
mailto:web@petercv.com

Algorithms Notes for Professionals 2

Chapter 1: Getting started with algorithm
Section 1.1: A sample algorithmic problem
An algorithmic problem is specified by describing the complete set of instances it must work on and of its output
after running on one of these instances. This distinction, between a problem and an instance of a problem, is
fundamental. The algorithmic problem known as sorting is defined as follows: [Skiena:2008:ADM:1410219]

Problem: Sorting
Input: A sequence of n keys, a_1, a_2, ..., a_n.
Output: The reordering of the input sequence such that a'_1 <= a'_2 <= ... <= a'_{n-1} <= a'_n

An instance of sorting might be an array of strings, such as { Haskell, Emacs } or a sequence of numbers such as
{ 154, 245, 1337 }.

Section 1.2: Getting Started with Simple Fizz Buzz Algorithm in
Swift
For those of you that are new to programming in Swift and those of you coming from different programming bases,
such as Python or Java, this article should be quite helpful. In this post, we will discuss a simple solution for
implementing swift algorithms.

Fizz Buzz

You may have seen Fizz Buzz written as Fizz Buzz, FizzBuzz, or Fizz-Buzz; they're all referring to the same thing. That
"thing" is the main topic of discussion today. First, what is FizzBuzz?

This is a common question that comes up in job interviews.

Imagine a series of a number from 1 to 10.

1 2 3 4 5 6 7 8 9 10

Fizz and Buzz refer to any number that's a multiple of 3 and 5 respectively. In other words, if a number is divisible
by 3, it is substituted with fizz; if a number is divisible by 5, it is substituted with buzz. If a number is simultaneously
a multiple of 3 AND 5, the number is replaced with "fizz buzz." In essence, it emulates the famous children game
"fizz buzz".

To work on this problem, open up Xcode to create a new playground and initialize an array like below:

// for example
let number = [1,2,3,4,5]
// here 3 is fizz and 5 is buzz

To find all the fizz and buzz, we must iterate through the array and check which numbers are fizz and which are
buzz. To do this, create a for loop to iterate through the array we have initialised:

for num in number {
 // Body and calculation goes here
}

After this, we can simply use the "if else" condition and module operator in swift ie - % to locate the fizz and buzz

Algorithms Notes for Professionals 3

for num in number {
 if num % 3 == 0 {
 print("\(num) fizz")
 } else {
 print(num)
 }
}

Great! You can go to the debug console in Xcode playground to see the output. You will find that the "fizzes" have
been sorted out in your array.

For the Buzz part, we will use the same technique. Let's give it a try before scrolling through the article — you can
check your results against this article once you've finished doing this.

for num in number {
 if num % 3 == 0 {
 print("\(num) fizz")
 } else if num % 5 == 0 {
 print("\(num) buzz")
 } else {
 print(num)
 }
}

Check the output!

It's rather straight forward — you divided the number by 3, fizz and divided the number by 5, buzz. Now, increase
the numbers in the array

let number = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]

We increased the range of numbers from 1-10 to 1-15 in order to demonstrate the concept of a "fizz buzz." Since 15
is a multiple of both 3 and 5, the number should be replaced with "fizz buzz." Try for yourself and check the answer!

Here is the solution:

for num in number {
 if num % 3 == 0 && num % 5 == 0 {
 print("\(num) fizz buzz")
 } else if num % 3 == 0 {
 print("\(num) fizz")
 } else if num % 5 == 0 {
 print("\(num) buzz")
 } else {
 print(num)
 }
}

Wait...it's not over though! The whole purpose of the algorithm is to customize the runtime correctly. Imagine if the
range increases from 1-15 to 1-100. The compiler will check each number to determine whether it is divisible by 3
or 5. It would then run through the numbers again to check if the numbers are divisible by 3 and 5. The code would
essentially have to run through each number in the array twice — it would have to runs the numbers by 3 first and
then run it by 5. To speed up the process, we can simply tell our code to divide the numbers by 15 directly.

Here is the final code:

for num in number {

Algorithms Notes for Professionals 4

 if num % 15 == 0 {
 print("\(num) fizz buzz")
 } else if num % 3 == 0 {
 print("\(num) fizz")
 } else if num % 5 == 0 {
 print("\(num) buzz")
 } else {
 print(num)
 }
}

As Simple as that, you can use any language of your choice and get started

Enjoy Coding

Algorithms Notes for Professionals 5

Chapter 2: Algorithm Complexity
Section 2.1: Big-Theta notation
Unlike Big-O notation, which represents only upper bound of the running time for some algorithm, Big-Theta is a
tight bound; both upper and lower bound. Tight bound is more precise, but also more difficult to compute.

The Big-Theta notation is symmetric: f(x) = Ө(g(x)) <=> g(x) = Ө(f(x))

An intuitive way to grasp it is that f(x) = Ө(g(x)) means that the graphs of f(x) and g(x) grow in the same rate, or
that the graphs 'behave' similarly for big enough values of x.

The full mathematical expression of the Big-Theta notation is as follows:
Ө(f(x)) = {g: N0 -> R and c1, c2, n0 > 0, where c1 < abs(g(n) / f(n)), for every n > n0 and abs is the absolute value }

An example

If the algorithm for the input n takes 42n^2 + 25n + 4 operations to finish, we say that is O(n^2), but is also O(n^3)
and O(n^100). However, it is Ө(n^2) and it is not Ө(n^3), Ө(n^4) etc. Algorithm that is Ө(f(n)) is also O(f(n)), but
not vice versa!

Formal mathematical definition

Ө(g(x)) is a set of functions.

Ө(g(x)) = {f(x) such that there exist positive constants c1, c2, N such that 0 <= c1*g(x) <= f(x)
<= c2*g(x) for all x > N}

Because Ө(g(x)) is a set, we could write f(x) ∈ Ө(g(x)) to indicate that f(x) is a member of Ө(g(x)). Instead, we
will usually write f(x) = Ө(g(x)) to express the same notion - that's the common way.

Whenever Ө(g(x)) appears in a formula, we interpret it as standing for some anonymous function that we do not
care to name. For example the equation T(n) = T(n/2) + Ө(n), means T(n) = T(n/2) + f(n) where f(n) is a
function in the set Ө(n).

Let f and g be two functions defined on some subset of the real numbers. We write f(x) = Ө(g(x)) as
x->infinity if and only if there are positive constants K and L and a real number x0 such that holds:

K|g(x)| <= f(x) <= L|g(x)| for all x >= x0.

The definition is equal to:

f(x) = O(g(x)) and f(x) = Ω(g(x))

A method that uses limits

if limit(x->infinity) f(x)/g(x) = c ∈ (0,∞) i.e. the limit exists and it's positive, then f(x) = Ө(g(x))

Common Complexity Classes

Name Notation n = 10 n = 100
Constant Ө(1) 1 1
Logarithmic Ө(log(n)) 3 7
Linear Ө(n) 10 100
Linearithmic Ө(n*log(n)) 30 700
Quadratic Ө(n^2) 100 10 000

Algorithms Notes for Professionals 6

Exponential Ө(2^n) 1 024 1.267650e+ 30
Factorial Ө(n!) 3 628 800 9.332622e+157

Section 2.2: Comparison of the asymptotic notations
Let f(n) and g(n) be two functions defined on the set of the positive real numbers, c, c1, c2, n0 are positive real
constants.

Notation f(n) = O(g(n)) f(n) = Ω(g(n)) f(n) = Θ(g(n)) f(n) =
o(g(n))

f(n) =
ω(g(n))

Formal
definition

∃ c > 0, ∃ n0 > 0 : ∀ n ≥ n0, 0 ≤ f(n) ≤ c g(n) ∃ c > 0, ∃ n0 > 0 : ∀ n ≥ n0, 0 ≤ c g(n) ≤ f(n) ∃ c1, c2 > 0, ∃ n0 > 0 : ∀ n ≥ n0, 0 ≤ c1 g(n) ≤
f(n) ≤ c2 g(n)

∀ c >
0, ∃
n0 > 0
: ∀ n
≥ n0,
0 ≤
f(n) <
c g(n)

∀ c >
0, ∃
n0 > 0
: ∀ n
≥ n0,
0 ≤ c
g(n) <
f(n)

Analogy
between the
asymptotic
comparison
of f, g and
real numbers
a, b

a ≤ b a ≥ b a = b a < b a > b

Example 7n + 10 = O(n^2 + n - 9) n^3 - 34 = Ω(10n^2 - 7n + 1) 1/2 n^2 - 7n = Θ(n^2) 5n^2 =
o(n^3)

7n^2 =
ω(n)

Graphic
interpretation

The asymptotic notations can be represented on a Venn diagram as follows:

Links

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein. Introduction to Algorithms.

Section 2.3: Big-Omega Notation
Ω-notation is used for asymptotic lower bound.

Formal definition

Let f(n) and g(n) be two functions defined on the set of the positive real numbers. We write f(n) = Ω(g(n)) if
there are positive constants c and n0 such that:

https://i.stack.imgur.com/AkEKr.png
https://i.stack.imgur.com/5qDtj.png
https://i.stack.imgur.com/RPdzC.png
https://i.stack.imgur.com/v2eH3.png

Algorithms Notes for Professionals 7

0 ≤ c g(n) ≤ f(n) for all n ≥ n0.

Notes

f(n) = Ω(g(n)) means that f(n) grows asymptotically no slower than g(n). Also we can say about Ω(g(n)) when
algorithm analysis is not enough for statement about Θ(g(n)) or / and O(g(n)).

From the definitions of notations follows the theorem:

For two any functions f(n) and g(n) we have f(n) = Ө(g(n)) if and only if f(n) = O(g(n)) and f(n) = Ω(g(n)).

Graphically Ω-notation may be represented as follows:

For example lets we have f(n) = 3n^2 + 5n - 4. Then f(n) = Ω(n^2). It is also correct f(n) = Ω(n), or even f(n)
= Ω(1).

Another example to solve perfect matching algorithm : If the number of vertices is odd then output "No Perfect
Matching" otherwise try all possible matchings.

We would like to say the algorithm requires exponential time but in fact you cannot prove a Ω(n^2) lower bound
using the usual definition of Ω since the algorithm runs in linear time for n odd. We should instead define
f(n)=Ω(g(n)) by saying for some constant c>0, f(n)≥ c g(n) for infinitely many n. This gives a nice
correspondence between upper and lower bounds: f(n)=Ω(g(n)) iff f(n) != o(g(n)).

References

Formal definition and theorem are taken from the book "Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,
Clifford Stein. Introduction to Algorithms".

https://i.stack.imgur.com/5qDtj.png

Algorithms Notes for Professionals 8

Chapter 3: Graph
A graph is a collection of points and lines connecting some (possibly empty) subset of them. The points of a graph
are called graph vertices, "nodes" or simply "points." Similarly, the lines connecting the vertices of a graph are called
graph edges, "arcs" or "lines."

A graph G can be defined as a pair (V,E), where V is a set of vertices, and E is a set of edges between the vertices E ?
{(u,v) | u, v ? V}.

Section 3.1: Storing Graphs (Adjacency Matrix)
To store a graph, two methods are common:

Adjacency Matrix
Adjacency List

An adjacency matrix is a square matrix used to represent a finite graph. The elements of the matrix indicate
whether pairs of vertices are adjacent or not in the graph.

Adjacent means 'next to or adjoining something else' or to be beside something. For example, your neighbors are
adjacent to you. In graph theory, if we can go to node B from node A, we can say that node B is adjacent to node
A. Now we will learn about how to store which nodes are adjacent to which one via Adjacency Matrix. This means,
we will represent which nodes share edge between them. Here matrix means 2D array.

Here you can see a table beside the graph, this is our adjacency matrix. Here Matrix[i][j] = 1 represents there is an
edge between i and j. If there's no edge, we simply put Matrix[i][j] = 0.

These edges can be weighted, like it can represent the distance between two cities. Then we'll put the value in
Matrix[i][j] instead of putting 1.

The graph described above is Bidirectional or Undirected, that means, if we can go to node 1 from node 2, we can
also go to node 2 from node 1. If the graph was Directed, then there would've been arrow sign on one side of the
graph. Even then, we could represent it using adjacency matrix.

https://en.wikipedia.org/wiki/Adjacency_matrix
https://i.stack.imgur.com/Oh7b1.jpg

Algorithms Notes for Professionals 9

We represent the nodes that don't share edge by infinity. One thing to be noticed is that, if the graph is undirected,
the matrix becomes symmetric.

The pseudo-code to create the matrix:

Procedure AdjacencyMatrix(N): //N represents the number of nodes
Matrix[N][N]
for i from 1 to N
 for j from 1 to N
 Take input -> Matrix[i][j]
 endfor
endfor

We can also populate the Matrix using this common way:

Procedure AdjacencyMatrix(N, E): // N -> number of nodes
Matrix[N][E] // E -> number of edges
for i from 1 to E
 input -> n1, n2, cost
 Matrix[n1][n2] = cost
 Matrix[n2][n1] = cost
endfor

For directed graphs, we can remove Matrix[n2][n1] = cost line.

The drawbacks of using Adjacency Matrix:

Memory is a huge problem. No matter how many edges are there, we will always need N * N sized matrix where N
is the number of nodes. If there are 10000 nodes, the matrix size will be 4 * 10000 * 10000 around 381 megabytes.
This is a huge waste of memory if we consider graphs that have a few edges.

Suppose we want to find out to which node we can go from a node u. We'll need to check the whole row of u, which
costs a lot of time.

The only benefit is that, we can easily find the connection between u-v nodes, and their cost using Adjacency
Matrix.

Java code implemented using above pseudo-code:

import java.util.Scanner;

public class Represent_Graph_Adjacency_Matrix
{
 private final int vertices;

https://i.stack.imgur.com/MBM3s.jpg

Algorithms Notes for Professionals 10

 private int[][] adjacency_matrix;

 public Represent_Graph_Adjacency_Matrix(int v)
 {
 vertices = v;
 adjacency_matrix = new int[vertices + 1][vertices + 1];
 }

 public void makeEdge(int to, int from, int edge)
 {
 try
 {
 adjacency_matrix[to][from] = edge;
 }
 catch (ArrayIndexOutOfBoundsException index)
 {
 System.out.println("The vertices does not exists");
 }
 }

 public int getEdge(int to, int from)
 {
 try
 {
 return adjacency_matrix[to][from];
 }
 catch (ArrayIndexOutOfBoundsException index)
 {
 System.out.println("The vertices does not exists");
 }
 return -1;
 }

 public static void main(String args[])
 {
 int v, e, count = 1, to = 0, from = 0;
 Scanner sc = new Scanner(System.in);
 Represent_Graph_Adjacency_Matrix graph;
 try
 {
 System.out.println("Enter the number of vertices: ");
 v = sc.nextInt();
 System.out.println("Enter the number of edges: ");
 e = sc.nextInt();

 graph = new Represent_Graph_Adjacency_Matrix(v);

 System.out.println("Enter the edges: <to> <from>");
 while (count <= e)
 {
 to = sc.nextInt();
 from = sc.nextInt();

 graph.makeEdge(to, from, 1);
 count++;
 }

 System.out.println("The adjacency matrix for the given graph is: ");
 System.out.print(" ");
 for (int i = 1; i <= v; i++)
 System.out.print(i + " ");
 System.out.println();

Algorithms Notes for Professionals 11

 for (int i = 1; i <= v; i++)
 {
 System.out.print(i + " ");
 for (int j = 1; j <= v; j++)
 System.out.print(graph.getEdge(i, j) + " ");
 System.out.println();
 }

 }
 catch (Exception E)
 {
 System.out.println("Somthing went wrong");
 }

 sc.close();
 }
}

Running the code: Save the file and compile using javac Represent_Graph_Adjacency_Matrix.java

Example:

$ java Represent_Graph_Adjacency_Matrix
Enter the number of vertices:
4
Enter the number of edges:
6
Enter the edges: <to> <from>
1 1
3 4
2 3
1 4
2 4
1 2
The adjacency matrix for the given graph is:
 1 2 3 4
1 1 1 0 1
2 0 0 1 1
3 0 0 0 1
4 0 0 0 0

Section 3.2: Introduction To Graph Theory
Graph Theory is the study of graphs, which are mathematical structures used to model pairwise relations between
objects.

Did you know, almost all the problems of planet Earth can be converted into problems of Roads and Cities, and
solved? Graph Theory was invented many years ago, even before the invention of computer. Leonhard Euler wrote
a paper on the Seven Bridges of Königsberg which is regarded as the first paper of Graph Theory. Since then,
people have come to realize that if we can convert any problem to this City-Road problem, we can solve it easily by
Graph Theory.

Graph Theory has many applications.One of the most common application is to find the shortest distance between
one city to another. We all know that to reach your PC, this web-page had to travel many routers from the server.
Graph Theory helps it to find out the routers that needed to be crossed. During war, which street needs to be
bombarded to disconnect the capital city from others, that too can be found out using Graph Theory.

https://en.wikipedia.org/wiki/Graph_theory
https://en.wikipedia.org/wiki/Leonhard_Euler
https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg

Algorithms Notes for Professionals 12

Let us first learn some basic definitions on Graph Theory.

Graph:

Let's say, we have 6 cities. We mark them as 1, 2, 3, 4, 5, 6. Now we connect the cities that have roads between each
other.

This is a simple graph where some cities are shown with the roads that are connecting them. In Graph Theory, we
call each of these cities Node or Vertex and the roads are called Edge. Graph is simply a connection of these nodes
and edges.

A node can represent a lot of things. In some graphs, nodes represent cities, some represent airports, some
represent a square in a chessboard. Edge represents the relation between each nodes. That relation can be the
time to go from one airport to another, the moves of a knight from one square to all the other squares etc.

http://i.stack.imgur.com/YzZHT.png

Algorithms Notes for Professionals 13

 Path of Knight in a Chessboard

In simple words, a Node represents any object and Edge represents the relation between two objects.

Adjacent Node:

If a node A shares an edge with node B, then B is considered to be adjacent to A. In other words, if two nodes are
directly connected, they are called adjacent nodes. One node can have multiple adjacent nodes.

Directed and Undirected Graph:

In directed graphs, the edges have direction signs on one side, that means the edges are Unidirectional. On the
other hand, the edges of undirected graphs have direction signs on both sides, that means they are Bidirectional.
Usually undirected graphs are represented with no signs on the either sides of the edges.

Let's assume there is a party going on. The people in the party are represented by nodes and there is an edge
between two people if they shake hands. Then this graph is undirected because any person A shake hands with
person B if and only if B also shakes hands with A. In contrast, if the edges from a person A to another person B
corresponds to A's admiring B, then this graph is directed, because admiration is not necessarily reciprocated. The
former type of graph is called an undirected graph and the edges are called undirected edges while the latter type of
graph is called a directed graph and the edges are called directed edges.

Weighted and Unweighted Graph:

A weighted graph is a graph in which a number (the weight) is assigned to each edge. Such weights might represent
for example costs, lengths or capacities, depending on the problem at hand.

http://i.stack.imgur.com/2EAW1.png

Algorithms Notes for Professionals 14

An unweighted graph is simply the opposite. We assume that, the weight of all the edges are same (presumably 1).

Path:

A path represents a way of going from one node to another. It consists of sequence of edges. There can be multiple

paths between two nodes.

In the example above, there are two paths from A to D. A->B, B->C, C->D is one path. The cost of this path is 3 + 4 +
2 = 9. Again, there's another path A->D. The cost of this path is 10. The path that costs the lowest is called shortest
path.

Degree:

The degree of a vertex is the number of edges that are connected to it. If there's any edge that connects to the
vertex at both ends (a loop) is counted twice.

http://i.stack.imgur.com/pnP5z.png
http://i.stack.imgur.com/3IPXO.png

Algorithms Notes for Professionals 15

In directed graphs, the nodes have two types of degrees:

In-degree: The number of edges that point to the node.
Out-degree: The number of edges that point from the node to other nodes.

For undirected graphs, they are simply called degree.

Some Algorithms Related to Graph Theory

Bellman–Ford algorithm
Dijkstra's algorithm
Ford–Fulkerson algorithm
Kruskal's algorithm
Nearest neighbour algorithm
Prim's algorithm
Depth-first search
Breadth-first search

Section 3.3: Storing Graphs (Adjacency List)
Adjacency list is a collection of unordered lists used to represent a finite graph. Each list describes the set of
neighbors of a vertex in a graph. It takes less memory to store graphs.

Let's see a graph, and its adjacency matrix:

Now we create a list using these values.

http://i.stack.imgur.com/fEQuL.png
https://en.wikipedia.org/wiki/Adjacency_list
http://i.stack.imgur.com/PwJ3D.jpg

Algorithms Notes for Professionals 16

This is called adjacency list. It shows which nodes are connected to which nodes. We can store this information
using a 2D array. But will cost us the same memory as Adjacency Matrix. Instead we are going to use dynamically
allocated memory to store this one.

Many languages support Vector or List which we can use to store adjacency list. For these, we don't need to specify
the size of the List. We only need to specify the maximum number of nodes.

The pseudo-code will be:

Procedure Adjacency-List(maxN, E): // maxN denotes the maximum number of nodes
edge[maxN] = Vector() // E denotes the number of edges
for i from 1 to E
 input -> x, y // Here x, y denotes there is an edge between x, y
 edge[x].push(y)
 edge[y].push(x)
end for
Return edge

Since this one is an undirected graph, it there is an edge from x to y, there is also an edge from y to x. If it was a
directed graph, we'd omit the second one. For weighted graphs, we need to store the cost too. We'll create another
vector or list named cost[] to store these. The pseudo-code:

Procedure Adjacency-List(maxN, E):
edge[maxN] = Vector()
cost[maxN] = Vector()
for i from 1 to E
 input -> x, y, w
 edge[x].push(y)
 cost[x].push(w)
end for
Return edge, cost

From this one, we can easily find out the total number of nodes connected to any node, and what these nodes are.

http://i.stack.imgur.com/WEEcx.jpg

Algorithms Notes for Professionals 17

It takes less time than Adjacency Matrix. But if we needed to find out if there's an edge between u and v, it'd have
been easier if we kept an adjacency matrix.

Section 3.4: Topological Sort
A topological ordering, or a topological sort, orders the vertices in a directed acyclic graph on a line, i.e. in a list,
such that all directed edges go from left to right. Such an ordering cannot exist if the graph contains a directed cycle
because there is no way that you can keep going right on a line and still return back to where you started from.

Formally, in a graph G = (V, E), then a linear ordering of all its vertices is such that if G contains an edge (u, v) ?
Efrom vertex u to vertex v then u precedes v in the ordering.

It is important to note that each DAG has at least one topological sort.

There are known algorithms for constructing a topological ordering of any DAG in linear time, one example is:

Call depth_first_search(G) to compute finishing times v.f for each vertex v1.
As each vertex is finished, insert it into the front of a linked list2.
the linked list of vertices, as it is now sorted.3.

A topological sort can be performed in ?(V + E) time, since the depth-first search algorithm takes ?(V + E) time
and it takes ?(1) (constant time) to insert each of |V| vertices into the front of a linked list.

Many applications use directed acyclic graphs to indicate precedences among events. We use topological sorting so
that we get an ordering to process each vertex before any of its successors.

Vertices in a graph may represent tasks to be performed and the edges may represent constraints that one task
must be performed before another; a topological ordering is a valid sequence to perform the tasks set of tasks
described in V.

Problem instance and its solution

Let a vertice v describe a Task(hours_to_complete: int), i. e. Task(4) describes a Task that takes 4 hours to
complete, and an edge e describe a Cooldown(hours: int) such that Cooldown(3) describes a duration of time to
cool down after a completed task.

Let our graph be called dag (since it is a directed acyclic graph), and let it contain 5 vertices:

A <- dag.add_vertex(Task(4));
B <- dag.add_vertex(Task(5));
C <- dag.add_vertex(Task(3));
D <- dag.add_vertex(Task(2));
E <- dag.add_vertex(Task(7));

where we connect the vertices with directed edges such that the graph is acyclic,

// A ---> C ----+
// | | |
// v v v
// B ---> D --> E
dag.add_edge(A, B, Cooldown(2));
dag.add_edge(A, C, Cooldown(2));
dag.add_edge(B, D, Cooldown(1));
dag.add_edge(C, D, Cooldown(1));
dag.add_edge(C, E, Cooldown(1));
dag.add_edge(D, E, Cooldown(3));

Algorithms Notes for Professionals 18

then there are three possible topological orderings between A and E,

A -> B -> D -> E1.
A -> C -> D -> E2.
A -> C -> E3.

Section 3.5: Detecting a cycle in a directed graph using Depth
First Traversal
A cycle in a directed graph exists if there's a back edge discovered during a DFS. A back edge is an edge from a node
to itself or one of the ancestors in a DFS tree. For a disconnected graph, we get a DFS forest, so you have to iterate
through all vertices in the graph to find disjoint DFS trees.

C++ implementation:

 #include <iostream>
 #include <list>

 using namespace std;

 #define NUM_V 4

 bool helper(list<int> *graph, int u, bool* visited, bool* recStack)
 {
 visited[u]=true;
 recStack[u]=true;
 list<int>::iterator i;
 for(i = graph[u].begin();i!=graph[u].end();++i)
 {
 if(recStack[*i]) //if vertice v is found in recursion stack of this DFS traversal
 return true;
 else if(*i==u) //if there's an edge from the vertex to itself
 return true;
 else if(!visited[*i])
 { if(helper(graph, *i, visited, recStack))
 return true;
 }
 }
 recStack[u]=false;
 return false;
 }
 /*
 /The wrapper function calls helper function on each vertices which have not been visited. Helper
function returns true if it detects a back edge in the subgraph(tree) or false.
*/
 bool isCyclic(list<int> *graph, int V)
 {
 bool visited[V]; //array to track vertices already visited
 bool recStack[V]; //array to track vertices in recursion stack of the traversal.

 for(int i = 0;i<V;i++)
 visited[i]=false, recStack[i]=false; //initialize all vertices as not visited and not
recursed

 for(int u = 0; u < V; u++) //Iteratively checks if every vertices have been visited
 { if(visited[u]==false)
 { if(helper(graph, u, visited, recStack)) //checks if the DFS tree from the vertex
contains a cycle
 return true;

Algorithms Notes for Professionals 19

 }
 }
 return false;
 }
 /*
 Driver function
 */
 int main()
 {
 list<int>* graph = new list<int>[NUM_V];
 graph[0].push_back(1);
 graph[0].push_back(2);
 graph[1].push_back(2);
 graph[2].push_back(0);
 graph[2].push_back(3);
 graph[3].push_back(3);
 bool res = isCyclic(graph, NUM_V);
 cout<<res<<endl;
 }

Result: As shown below, there are three back edges in the graph. One between vertex 0 and 2; between vertice 0, 1,
and 2; and vertex 3. Time complexity of search is O(V+E) where V is the number of vertices and E is the number of
edges.

Section 3.6: Thorup's algorithm
Thorup's algorithm for single source shortest path for undirected graph has the time complexity O(m), lower than
Dijkstra.

Basic ideas are the following. (Sorry, I didn't try implementing it yet, so I might miss some minor details. And the
original paper is paywalled so I tried to reconstruct it from other sources referencing it. Please remove this
comment if you could verify.)

There are ways to find the spanning tree in O(m) (not described here). You need to "grow" the spanning tree
from the shortest edge to the longest, and it would be a forest with several connected components before

http://i.stack.imgur.com/UHwvp.png

Algorithms Notes for Professionals 20

fully grown.
Select an integer b (b>=2) and only consider the spanning forests with length limit b^k. Merge the
components which are exactly the same but with different k, and call the minimum k the level of the
component. Then logically make components into a tree. u is the parent of v iff u is the smallest component
distinct from v that fully contains v. The root is the whole graph and the leaves are single vertices in the
original graph (with the level of negative infinity). The tree still has only O(n) nodes.
Maintain the distance of each component to the source (like in Dijkstra's algorithm). The distance of a
component with more than one vertices is the minimum distance of its unexpanded children. Set the
distance of the source vertex to 0 and update the ancestors accordingly.
Consider the distances in base b. When visiting a node in level k the first time, put its children into buckets
shared by all nodes of level k (as in bucket sort, replacing the heap in Dijkstra's algorithm) by the digit k and
higher of its distance. Each time visiting a node, consider only its first b buckets, visit and remove each of
them, update the distance of the current node, and relink the current node to its own parent using the new
distance and wait for the next visit for the following buckets.
When a leaf is visited, the current distance is the final distance of the vertex. Expand all edges from it in the
original graph and update the distances accordingly.
Visit the root node (whole graph) repeatedly until the destination is reached.

It is based on the fact that, there isn't an edge with length less than l between two connected components of the
spanning forest with length limitation l, so, starting at distance x, you could focus only on one connected
component until you reach the distance x + l. You'll visit some vertices before vertices with shorter distance are all
visited, but that doesn't matter because it is known there won't be a shorter path to here from those vertices. Other
parts work like the bucket sort / MSD radix sort, and of course, it requires the O(m) spanning tree.

Algorithms Notes for Professionals 21

Chapter 4: Graph Traversals
Section 4.1: Depth First Search traversal function
The function takes the argument of the current node index, adjacency list (stored in vector of vectors in this
example), and vector of boolean to keep track of which node has been visited.

void dfs(int node, vector<vector<int>>* graph, vector<bool>* visited) {
 // check whether node has been visited before
 if((*visited)[node])
 return;

 // set as visited to avoid visiting the same node twice
 (*visited)[node] = true;

 // perform some action here
 cout << node;

 // traverse to the adjacent nodes in depth-first manner
 for(int i = 0; i < (*graph)[node].size(); ++i)
 dfs((*graph)[node][i], graph, visited);
}

Algorithms Notes for Professionals 22

Chapter 5: Dijkstra’s Algorithm
Section 5.1: Dijkstra's Shortest Path Algorithm
Before proceeding, it is recommended to have a brief idea about Adjacency Matrix and BFS

Dijkstra's algorithm is known as single-source shortest path algorithm. It is used for finding the shortest paths
between nodes in a graph, which may represent, for example, road networks. It was conceived by Edsger W.
Dijkstra in 1956 and published three years later.

We can find shortest path using Breadth First Search (BFS) searching algorithm. This algorithm works fine, but the
problem is, it assumes the cost of traversing each path is same, that means the cost of each edge is same. Dijkstra's
algorithm helps us to find the shortest path where the cost of each path is not the same.

At first we will see, how to modify BFS to write Dijkstra's algorithm, then we will add priority queue to make it a
complete Dijkstra's algorithm.

Let's say, the distance of each node from the source is kept in d[] array. As in, d[3] represents that d[3] time is taken
to reach node 3 from source. If we don't know the distance, we will store infinity in d[3]. Also, let cost[u][v]
represent the cost of u-v. That means it takes cost[u][v] to go from u node to v node.

We need to understand Edge Relaxation. Let's say, from your house, that is source, it takes 10 minutes to go to
place A. And it takes 25 minutes to go to place B. We have,

d[A] = 10
d[B] = 25

Now let's say it takes 7 minutes to go from place A to place B, that means:

cost[A][B] = 7

Then we can go to place B from source by going to place A from source and then from place A, going to place B,
which will take 10 + 7 = 17 minutes, instead of 25 minutes. So,

d[A] + cost[A][B] < d[B]

Then we update,

d[B] = d[A] + cost[A][B]

This is called relaxation. We will go from node u to node v and if d[u] + cost[u][v] < d[v] then we will update d[v] =
d[u] + cost[u][v].

In BFS, we didn't need to visit any node twice. We only checked if a node is visited or not. If it was not visited, we
pushed the node in queue, marked it as visited and incremented the distance by 1. In Dijkstra, we can push a node

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
https://i.stack.imgur.com/R6Tva.png

Algorithms Notes for Professionals 23

in queue and instead of updating it with visited, we relax or update the new edge. Let's look at one example:

Let's assume, Node 1 is the Source. Then,

d[1] = 0
d[2] = d[3] = d[4] = infinity (or a large value)

We set, d[2], d[3] and d[4] to infinity because we don't know the distance yet. And the distance of source is of
course 0. Now, we go to other nodes from source and if we can update them, then we'll push them in the queue.
Say for example, we'll traverse edge 1-2. As d[1] + 2 < d[2] which will make d[2] = 2. Similarly, we'll traverse edge 1-3
which makes d[3] = 5.

We can clearly see that 5 is not the shortest distance we can cross to go to node 3. So traversing a node only once,
like BFS, doesn't work here. If we go from node 2 to node 3 using edge 2-3, we can update d[3] = d[2] + 1 = 3. So we
can see that one node can be updated many times. How many times you ask? The maximum number of times a
node can be updated is the number of in-degree of a node.

Let's see the pseudo-code for visiting any node multiple times. We will simply modify BFS:

procedure BFSmodified(G, source):
Q = queue()
distance[] = infinity
Q.enqueue(source)
distance[source]=0
while Q is not empty
 u <- Q.pop()
 for all edges from u to v in G.adjacentEdges(v) do
 if distance[u] + cost[u][v] < distance[v]
 distance[v] = distance[u] + cost[u][v]
 end if
 end for
end while
Return distance

https://i.stack.imgur.com/aQ4Nc.png

Algorithms Notes for Professionals 24

This can be used to find the shortest path of all node from the source. The complexity of this code is not so good.
Here's why,

In BFS, when we go from node 1 to all other nodes, we follow first come, first serve method. For example, we went to
node 3 from source before processing node 2. If we go to node 3 from source, we update node 4 as 5 + 3 = 8.
When we again update node 3 from node 2, we need to update node 4 as 3 + 3 = 6 again! So node 4 is updated
twice.

Dijkstra proposed, instead of going for First come, first serve method, if we update the nearest nodes first, then it'll
take less updates. If we processed node 2 before, then node 3 would have been updated before, and after
updating node 4 accordingly, we'd easily get the shortest distance! The idea is to choose from the queue, the node,
that is closest to the source. So we will use Priority Queue here so that when we pop the queue, it will bring us the
closest node u from source. How will it do that? It'll check the value of d[u] with it.

Let's see the pseudo-code:

procedure dijkstra(G, source):
Q = priority_queue()
distance[] = infinity
Q.enqueue(source)
distance[source] = 0
while Q is not empty
 u <- nodes in Q with minimum distance[]
 remove u from the Q
 for all edges from u to v in G.adjacentEdges(v) do
 if distance[u] + cost[u][v] < distance[v]
 distance[v] = distance[u] + cost[u][v]
 Q.enqueue(v)
 end if
 end for
end while
Return distance

The pseudo-code returns distance of all other nodes from the source. If we want to know distance of a single node
v, we can simply return the value when v is popped from the queue.

Now, does Dijkstra's Algorithm work when there's a negative edge? If there's a negative cycle, then infinity loop will
occur, as it will keep reducing the cost every time. Even if there is a negative edge, Dijkstra won't work, unless we
return right after the target is popped. But then, it won't be a Dijkstra algorithm. We'll need Bellman–Ford algorithm
for processing negative edge/cycle.

Complexity:

The complexity of BFS is O(log(V+E)) where V is the number of nodes and E is the number of edges. For Dijkstra,
the complexity is similar, but sorting of Priority Queue takes O(logV). So the total complexity is: O(Vlog(V)+E)

Below is a Java example to solve Dijkstra's Shortest Path Algorithm using Adjacency Matrix

import java.util.*;
import java.lang.*;
import java.io.*;

class ShortestPath
{
 static final int V=9;
 int minDistance(int dist[], Boolean sptSet[])
 {

Algorithms Notes for Professionals 25

 int min = Integer.MAX_VALUE, min_index=-1;

 for (int v = 0; v < V; v++)
 if (sptSet[v] == false && dist[v] <= min)
 {
 min = dist[v];
 min_index = v;
 }

 return min_index;
 }

 void printSolution(int dist[], int n)
 {
 System.out.println("Vertex Distance from Source");
 for (int i = 0; i < V; i++)
 System.out.println(i+" \t\t "+dist[i]);
 }

 void dijkstra(int graph[][], int src)
 {

 Boolean sptSet[] = new Boolean[V];

 for (int i = 0; i < V; i++)
 {
 dist[i] = Integer.MAX_VALUE;
 sptSet[i] = false;
 }

 dist[src] = 0;

 for (int count = 0; count < V-1; count++)
 {
 int u = minDistance(dist, sptSet);

 sptSet[u] = true;

 for (int v = 0; v < V; v++)

 if (!sptSet[v] && graph[u][v]!=0 &&
 dist[u] != Integer.MAX_VALUE &&
 dist[u]+graph[u][v] < dist[v])
 dist[v] = dist[u] + graph[u][v];
 }

 printSolution(dist, V);
 }

 public static void main (String[] args)
 {
 int graph[][] = new int[][]{{0, 4, 0, 0, 0, 0, 0, 8, 0},
 {4, 0, 8, 0, 0, 0, 0, 11, 0},
 {0, 8, 0, 7, 0, 4, 0, 0, 2},
 {0, 0, 7, 0, 9, 14, 0, 0, 0},
 {0, 0, 0, 9, 0, 10, 0, 0, 0},
 {0, 0, 4, 14, 10, 0, 2, 0, 0},
 {0, 0, 0, 0, 0, 2, 0, 1, 6},
 {8, 11, 0, 0, 0, 0, 1, 0, 7},
 {0, 0, 2, 0, 0, 0, 6, 7, 0}
 };
 ShortestPath t = new ShortestPath();

Algorithms Notes for Professionals 26

 t.dijkstra(graph, 0);
 }
}

Expected output of the program is

Vertex Distance from Source
0 0
1 4
2 12
3 19
4 21
5 11
6 9
7 8
8 14

Algorithms Notes for Professionals 27

Chapter 6: A* Pathfinding
Section 6.1: Introduction to A*
A* (A star) is a search algorithm that is used for finding path from one node to another. So it can be compared with
Breadth First Search, or Dijkstra’s algorithm, or Depth First Search, or Best First Search. A* algorithm is widely used
in graph search for being better in efficiency and accuracy, where graph pre-processing is not an option.

A* is a an specialization of Best First Search , in which the function of evaluation f is define in a particular way.

f(n) = g(n) + h(n) is the minimum cost since the initial node to the objectives conditioned to go thought node n.

g(n) is the minimum cost from the initial node to n.

h(n) is the minimum cost from n to the closest objective to n

A* is an informed search algorithm and it always guarantees to find the smallest path (path with minimum cost) in
the least possible time (if uses admissible heuristic). So it is both complete and optimal. The following animation
demonstrates A* search-

Section 6.2: A* Pathfinding through a maze with no obstacles
Let's say we have the following 4 by 4 grid:

https://en.wikipedia.org/wiki/Admissible_heuristic
https://i.stack.imgur.com/TGfc9.gif

Algorithms Notes for Professionals 28

Let's assume that this is a maze. There are no walls/obstacles, though. We only have a starting point (the green
square), and an ending point (the red square). Let's also assume that in order to get from green to red, we cannot
move diagonally. So, starting from the green square, let's see which squares we can move to, and highlight them in
blue:

https://i.stack.imgur.com/9pe82.png

Algorithms Notes for Professionals 29

In order to choose which square to move to next, we need to take into account 2 heuristics:

The "g" value - This is how far away this node is from the green square.1.
The "h" value - This is how far away this node is from the red square.2.
The "f" value - This is the sum of the "g" value and the "h" value. This is the final number which tells us which3.
node to move to.

In order to calculate these heuristics, this is the formula we will use: distance = abs(from.x - to.x) +
abs(from.y - to.y)

This is known as the "Manhattan Distance" formula.

Let's calculate the "g" value for the blue square immediately to the left of the green square: abs(3 - 2) + abs(2 -
2) = 1

Great! We've got the value: 1. Now, let's try calculating the "h" value: abs(2 - 0) + abs(2 - 0) = 4

Perfect. Now, let's get the "f" value: 1 + 4 = 5

So, the final value for this node is "5".

Let's do the same for all the other blue squares. The big number in the center of each square is the "f" value, while
the number on the top left is the "g" value, and the number on the top right is the "h" value:

https://i.stack.imgur.com/vDqkY.png
https://xlinux.nist.gov/dads/HTML/manhattanDistance.html

Algorithms Notes for Professionals 30

We've calculated the g, h, and f values for all of the blue nodes. Now, which do we pick?

Whichever one has the lowest f value.

However, in this case, we have 2 nodes with the same f value, 5. How do we pick between them?

Simply, either choose one at random, or have a priority set. I usually prefer to have a priority like so: "Right > Up >
Down > Left"

One of the nodes with the f value of 5 takes us in the "Down" direction, and the other takes us "Left". Since Down is
at a higher priority than Left, we choose the square which takes us "Down".

I now mark the nodes which we calculated the heuristics for, but did not move to, as orange, and the node which
we chose as cyan:

https://i.stack.imgur.com/RoGbr.png

Algorithms Notes for Professionals 31

Alright, now let's calculate the same heuristics for the nodes around the cyan node:

Again, we choose the node going down from the cyan node, as all the options have the same f value:

https://i.stack.imgur.com/Dunrn.png
https://i.stack.imgur.com/WuCwv.png

Algorithms Notes for Professionals 32

Let's calculate the heuristics for the only neighbour that the cyan node has:

Alright, since we will follow the same pattern we have been following:

https://i.stack.imgur.com/nlywy.png
https://i.stack.imgur.com/2rf8P.png

Algorithms Notes for Professionals 33

Once more, let's calculate the heuristics for the node's neighbour:

Let's move there:

https://i.stack.imgur.com/8UBoB.png
https://i.stack.imgur.com/TuXrO.png

Algorithms Notes for Professionals 34

Finally, we can see that we have a winning square beside us, so we move there, and we are done.

Section 6.3: Solving 8-puzzle problem using A* algorithm

Problem definition:

An 8 puzzle is a simple game consisting of a 3 x 3 grid (containing 9 squares). One of the squares is empty. The
object is to move to squares around into different positions and having the numbers displayed in the "goal state".

Given an initial state of 8-puzzle game and a final state of to be reached, find the most cost-effective path to reach
the final state from initial state.

Initial state:

_ 1 3
4 2 5
7 8 6

https://i.stack.imgur.com/r8MJd.png
https://i.stack.imgur.com/M2n1h.png

Algorithms Notes for Professionals 35

Final state:

1 2 3
4 5 6
7 8 _

Heuristic to be assumed:

Let us consider the Manhattan distance between the current and final state as the heuristic for this problem
statement.

h(n) = | x - p | + | y - q |
where x and y are cell co-ordinates in the current state
 p and q are cell co-ordinates in the final state

Total cost function:

So the total cost function f(n) is given by,

f(n) = g(n) + h(n), where g(n) is the cost required to reach the current state from given initial
state

Solution to example problem:

First we find the heuristic value required to reach the final state from initial state. The cost function, g(n) = 0, as we
are in the initial state

h(n) = 8

The above value is obtained, as 1 in the current state is 1 horizontal distance away than the 1 in final state. Same
goes for 2, 5, 6. _ is 2 horizontal distance away and 2 vertical distance away. So total value for h(n) is 1 + 1 + 1 + 1 +
2 + 2 = 8. Total cost function f(n) is equal to 8 + 0 = 8.

Now, the possible states that can be reached from initial state are found and it happens that we can either move _
to right or downwards.

So states obtained after moving those moves are:

1 _ 3 4 1 3
4 2 5 _ 2 5
7 8 6 7 8 6
 (1) (2)

Again the total cost function is computed for these states using the method described above and it turns out to be
6 and 7 respectively. We chose the state with minimum cost which is state (1). The next possible moves can be Left,
Right or Down. We won't move Left as we were previously in that state. So, we can move Right or Down.

Again we find the states obtained from (1).

1 3 _ 1 2 3

Algorithms Notes for Professionals 36

4 2 5 4 _ 5
7 8 6 7 8 6
 (3) (4)

(3) leads to cost function equal to 6 and (4) leads to 4. Also, we will consider (2) obtained before which has cost
function equal to 7. Choosing minimum from them leads to (4). Next possible moves can be Left or Right or Down.
We get states:

1 2 3 1 2 3 1 2 3
_ 4 5 4 5 _ 4 8 5
7 8 6 7 8 6 7 _ 6
 (5) (6) (7)

We get costs equal to 5, 2 and 4 for (5), (6) and (7) respectively. Also, we have previous states (3) and (2) with 6 and 7
respectively. We chose minimum cost state which is (6). Next possible moves are Up, and Down and clearly Down
will lead us to final state leading to heuristic function value equal to 0.

Algorithms Notes for Professionals 37

Chapter 7: A* Pathfinding Algorithm
This topic is going to focus on the A* Pathfinding algorithm, how it's used, and why it works.

Note to future contributors: I have added an example for A* Pathfinding without any obstacles, on a 4x4 grid. An
example with obstacles is still needed.

Section 7.1: Simple Example of A* Pathfinding: A maze with no
obstacles
Let's say we have the following 4 by 4 grid:

Let's assume that this is a maze. There are no walls/obstacles, though. We only have a starting point (the green
square), and an ending point (the red square). Let's also assume that in order to get from green to red, we cannot

https://i.stack.imgur.com/9pe82.png

Algorithms Notes for Professionals 38

move diagonally. So, starting from the green square, let's see which squares we can move to, and highlight them in
blue:

In order to choose which square to move to next, we need to take into account 2 heuristics:

The "g" value - This is how far away this node is from the green square.1.
The "h" value - This is how far away this node is from the red square.2.
The "f" value - This is the sum of the "g" value and the "h" value. This is the final number which tells us which3.
node to move to.

In order to calculate these heuristics, this is the formula we will use: distance = abs(from.x - to.x) +
abs(from.y - to.y)

This is known as the "Manhattan Distance" formula.

Let's calculate the "g" value for the blue square immediately to the left of the green square: abs(3 - 2) + abs(2 -
2) = 1

Great! We've got the value: 1. Now, let's try calculating the "h" value: abs(2 - 0) + abs(2 - 0) = 4

Perfect. Now, let's get the "f" value: 1 + 4 = 5

So, the final value for this node is "5".

Let's do the same for all the other blue squares. The big number in the center of each square is the "f" value, while
the number on the top left is the "g" value, and the number on the top right is the "h" value:

https://i.stack.imgur.com/vDqkY.png
https://xlinux.nist.gov/dads/HTML/manhattanDistance.html

Algorithms Notes for Professionals 39

We've calculated the g, h, and f values for all of the blue nodes. Now, which do we pick?

Whichever one has the lowest f value.

However, in this case, we have 2 nodes with the same f value, 5. How do we pick between them?

Simply, either choose one at random, or have a priority set. I usually prefer to have a priority like so: "Right > Up >
Down > Left"

One of the nodes with the f value of 5 takes us in the "Down" direction, and the other takes us "Left". Since Down is
at a higher priority than Left, we choose the square which takes us "Down".

I now mark the nodes which we calculated the heuristics for, but did not move to, as orange, and the node which
we chose as cyan:

https://i.stack.imgur.com/RoGbr.png

Algorithms Notes for Professionals 40

Alright, now let's calculate the same heuristics for the nodes around the cyan node:

Again, we choose the node going down from the cyan node, as all the options have the same f value:

https://i.stack.imgur.com/Dunrn.png
https://i.stack.imgur.com/WuCwv.png

Algorithms Notes for Professionals 41

Let's calculate the heuristics for the only neighbour that the cyan node has:

Alright, since we will follow the same pattern we have been following:

https://i.stack.imgur.com/nlywy.png
https://i.stack.imgur.com/2rf8P.png

Algorithms Notes for Professionals 42

Once more, let's calculate the heuristics for the node's neighbour:

Let's move there:

https://i.stack.imgur.com/8UBoB.png
https://i.stack.imgur.com/TuXrO.png

Algorithms Notes for Professionals 43

Finally, we can see that we have a winning square beside us, so we move there, and we are done.

https://i.stack.imgur.com/r8MJd.png

Algorithms Notes for Professionals 44

Chapter 8: Dynamic Programming
Dynamics programming is a widely used concept and its often used for optimization. It refers to simplifying a
complicated problem by breaking it down into simpler sub-problems in a recursive manner usually Bottom up
approach. There are two key attributes that a problem must have in order for dynamic programming to be
applicable "Optimal substructure" and "Overlapping sub-problems".To achieve its optimization, Dynamics
programming uses a concept called Memorization

Section 8.1: Edit Distance
The problem statement is like if we are given two string str1 and str2 then how many minimum number of
operations can be performed on the str1 that it gets converted to str2.

Implementation in Java

public class EditDistance {

public static void main(String[] args) {
 // TODO Auto-generated method stub
 String str1 = "march";
 String str2 = "cart";

 EditDistance ed = new EditDistance();
 System.out.println(ed.getMinConversions(str1, str2));
}

public int getMinConversions(String str1, String str2){
 int dp[][] = new int[str1.length()+1][str2.length()+1];
 for(int i=0;i<=str1.length();i++){
 for(int j=0;j<=str2.length();j++){
 if(i==0)
 dp[i][j] = j;
 else if(j==0)
 dp[i][j] = i;
 else if(str1.charAt(i-1) == str2.charAt(j-1))
 dp[i][j] = dp[i-1][j-1];
 else{
 dp[i][j] = 1 + Math.min(dp[i-1][j], Math.min(dp[i][j-1], dp[i-1][j-1]));
 }
 }
 }
 return dp[str1.length()][str2.length()];
}

}

Output

3

Section 8.2: Weighted Job Scheduling Algorithm
Weighted Job Scheduling Algorithm can also be denoted as Weighted Activity Selection Algorithm.

The problem is, given certain jobs with their start time and end time, and a profit you make when you finish the job,
what is the maximum profit you can make given no two jobs can be executed in parallel?

Algorithms Notes for Professionals 45

This one looks like Activity Selection using Greedy Algorithm, but there's an added twist. That is, instead of
maximizing the number of jobs finished, we focus on making the maximum profit. The number of jobs performed
doesn't matter here.

Let's look at an example:

+-------------------------+---------+---------+---------+---------+---------+---------+
| Name | A | B | C | D | E | F |
+-------------------------+---------+---------+---------+---------+---------+---------+
|(Start Time, Finish Time)| (2,5) | (6,7) | (7,9) | (1,3) | (5,8) | (4,6) |
+-------------------------+---------+---------+---------+---------+---------+---------+
| Profit | 6 | 4 | 2 | 5 | 11 | 5 |
+-------------------------+---------+---------+---------+---------+---------+---------+

The jobs are denoted with a name, their start and finishing time and profit. After a few iterations, we can find out if
we perform Job-A and Job-E, we can get the maximum profit of 17. Now how to find this out using an algorithm?

The first thing we do is sort the jobs by their finishing time in non-decreasing order. Why do we do this? It's because
if we select a job that takes less time to finish, then we leave the most amount of time for choosing other jobs. We
have:

+-------------------------+---------+---------+---------+---------+---------+---------+
| Name | D | A | F | B | E | C |
+-------------------------+---------+---------+---------+---------+---------+---------+
|(Start Time, Finish Time)| (1,3) | (2,5) | (4,6) | (6,7) | (5,8) | (7,9) |
+-------------------------+---------+---------+---------+---------+---------+---------+
| Profit | 5 | 6 | 5 | 4 | 11 | 2 |
+-------------------------+---------+---------+---------+---------+---------+---------+

We'll have an additional temporary array Acc_Prof of size n (Here, n denotes the total number of jobs). This will
contain the maximum accumulated profit of performing the jobs. Don't get it? Wait and watch. We'll initialize the
values of the array with the profit of each jobs. That means, Acc_Prof[i] will at first hold the profit of performing i-th
job.

+-------------------------+---------+---------+---------+---------+---------+---------+
| Acc_Prof | 5 | 6 | 5 | 4 | 11 | 2 |
+-------------------------+---------+---------+---------+---------+---------+---------+

Now let's denote position 2 with i, and position 1 will be denoted with j. Our strategy will be to iterate j from 1 to
i-1 and after each iteration, we will increment i by 1, until i becomes n+1.

 j i

+-------------------------+---------+---------+---------+---------+---------+---------+
| Name | D | A | F | B | E | C |
+-------------------------+---------+---------+---------+---------+---------+---------+
|(Start Time, Finish Time)| (1,3) | (2,5) | (4,6) | (6,7) | (5,8) | (7,9) |
+-------------------------+---------+---------+---------+---------+---------+---------+
| Profit | 5 | 6 | 5 | 4 | 11 | 2 |
+-------------------------+---------+---------+---------+---------+---------+---------+
| Acc_Prof | 5 | 6 | 5 | 4 | 11 | 2 |
+-------------------------+---------+---------+---------+---------+---------+---------+

Algorithms Notes for Professionals 46

We check if Job[i] and Job[j] overlap, that is, if the finish time of Job[j] is greater than Job[i]'s start time, then these
two jobs can't be done together. However, if they don't overlap, we'll check if Acc_Prof[j] + Profit[i] > Acc_Prof[i]. If
this is the case, we will update Acc_Prof[i] = Acc_Prof[j] + Profit[i]. That is:

if Job[j].finish_time <= Job[i].start_time
 if Acc_Prof[j] + Profit[i] > Acc_Prof[i]
 Acc_Prof[i] = Acc_Prof[j] + Profit[i]
 endif
endif

Here Acc_Prof[j] + Profit[i] represents the accumulated profit of doing these two jobs toegther. Let's check it for
our example:

Here Job[j] overlaps with Job[i]. So these to can't be done together. Since our j is equal to i-1, we increment the
value of i to i+1 that is 3. And we make j = 1.

 j i

+-------------------------+---------+---------+---------+---------+---------+---------+
| Name | D | A | F | B | E | C |
+-------------------------+---------+---------+---------+---------+---------+---------+
|(Start Time, Finish Time)| (1,3) | (2,5) | (4,6) | (6,7) | (5,8) | (7,9) |
+-------------------------+---------+---------+---------+---------+---------+---------+
| Profit | 5 | 6 | 5 | 4 | 11 | 2 |
+-------------------------+---------+---------+---------+---------+---------+---------+
| Acc_Prof | 5 | 6 | 5 | 4 | 11 | 2 |
+-------------------------+---------+---------+---------+---------+---------+---------+

Now Job[j] and Job[i] don't overlap. The total amount of profit we can make by picking these two jobs is: Acc_Prof[j]
+ Profit[i] = 5 + 5 = 10 which is greater than Acc_Prof[i]. So we update Acc_Prof[i] = 10. We also increment j by 1.
We get,

 j i

+-------------------------+---------+---------+---------+---------+---------+---------+
| Name | D | A | F | B | E | C |
+-------------------------+---------+---------+---------+---------+---------+---------+
|(Start Time, Finish Time)| (1,3) | (2,5) | (4,6) | (6,7) | (5,8) | (7,9) |
+-------------------------+---------+---------+---------+---------+---------+---------+
| Profit | 5 | 6 | 5 | 4 | 11 | 2 |
+-------------------------+---------+---------+---------+---------+---------+---------+
| Acc_Prof | 5 | 6 | 10 | 4 | 11 | 2 |
+-------------------------+---------+---------+---------+---------+---------+---------+

Here, Job[j] overlaps with Job[i] and j is also equal to i-1. So we increment i by 1, and make j = 1. We get,

 j i

+-------------------------+---------+---------+---------+---------+---------+---------+
| Name | D | A | F | B | E | C |
+-------------------------+---------+---------+---------+---------+---------+---------+
|(Start Time, Finish Time)| (1,3) | (2,5) | (4,6) | (6,7) | (5,8) | (7,9) |
+-------------------------+---------+---------+---------+---------+---------+---------+
| Profit | 5 | 6 | 5 | 4 | 11 | 2 |
+-------------------------+---------+---------+---------+---------+---------+---------+
| Acc_Prof | 5 | 6 | 10 | 4 | 11 | 2 |

Algorithms Notes for Professionals 47

+-------------------------+---------+---------+---------+---------+---------+---------+

Now, Job[j] and Job[i] don't overlap, we get the accumulated profit 5 + 4 = 9, which is greater than Acc_Prof[i]. We
update Acc_Prof[i] = 9 and increment j by 1.

 j i

+-------------------------+---------+---------+---------+---------+---------+---------+
| Name | D | A | F | B | E | C |
+-------------------------+---------+---------+---------+---------+---------+---------+
|(Start Time, Finish Time)| (1,3) | (2,5) | (4,6) | (6,7) | (5,8) | (7,9) |
+-------------------------+---------+---------+---------+---------+---------+---------+
| Profit | 5 | 6 | 5 | 4 | 11 | 2 |
+-------------------------+---------+---------+---------+---------+---------+---------+
| Acc_Prof | 5 | 6 | 10 | 9 | 11 | 2 |
+-------------------------+---------+---------+---------+---------+---------+---------+

Again Job[j] and Job[i] don't overlap. The accumulated profit is: 6 + 4 = 10, which is greater than Acc_Prof[i]. We
again update Acc_Prof[i] = 10. We increment j by 1. We get:

 j i

+-------------------------+---------+---------+---------+---------+---------+---------+
| Name | D | A | F | B | E | C |
+-------------------------+---------+---------+---------+---------+---------+---------+
|(Start Time, Finish Time)| (1,3) | (2,5) | (4,6) | (6,7) | (5,8) | (7,9) |
+-------------------------+---------+---------+---------+---------+---------+---------+
| Profit | 5 | 6 | 5 | 4 | 11 | 2 |
+-------------------------+---------+---------+---------+---------+---------+---------+
| Acc_Prof | 5 | 6 | 10 | 10 | 11 | 2 |
+-------------------------+---------+---------+---------+---------+---------+---------+

If we continue this process, after iterating through the whole table using i, our table will finally look like:

+-------------------------+---------+---------+---------+---------+---------+---------+
| Name | D | A | F | B | E | C |
+-------------------------+---------+---------+---------+---------+---------+---------+
|(Start Time, Finish Time)| (1,3) | (2,5) | (4,6) | (6,7) | (5,8) | (7,9) |
+-------------------------+---------+---------+---------+---------+---------+---------+
| Profit | 5 | 6 | 5 | 4 | 11 | 2 |
+-------------------------+---------+---------+---------+---------+---------+---------+
| Acc_Prof | 5 | 6 | 10 | 14 | 17 | 8 |
+-------------------------+---------+---------+---------+---------+---------+---------+

* A few steps have been skipped to make the document shorter.

If we iterate through the array Acc_Prof, we can find out the maximum profit to be 17! The pseudo-code:

Procedure WeightedJobScheduling(Job)
sort Job according to finish time in non-decreasing order
for i -> 2 to n
 for j -> 1 to i-1
 if Job[j].finish_time <= Job[i].start_time
 if Acc_Prof[j] + Profit[i] > Acc_Prof[i]
 Acc_Prof[i] = Acc_Prof[j] + Profit[i]

Algorithms Notes for Professionals 48

 endif
 endif
 endfor
endfor

maxProfit = 0
for i -> 1 to n
 if maxProfit < Acc_Prof[i]
 maxProfit = Acc_Prof[i]
return maxProfit

The complexity of populating the Acc_Prof array is O(n2). The array traversal takes O(n). So the total complexity of
this algorithm is O(n2).

Now, If we want to find out which jobs were performed to get the maximum profit, we need to traverse the array in
reverse order and if the Acc_Prof matches the maxProfit, we will push the name of the job in a stack and subtract
Profit of that job from maxProfit. We will do this until our maxProfit > 0 or we reach the beginning point of the
Acc_Prof array. The pseudo-code will look like:

Procedure FindingPerformedJobs(Job, Acc_Prof, maxProfit):
S = stack()
for i -> n down to 0 and maxProfit > 0
 if maxProfit is equal to Acc_Prof[i]
 S.push(Job[i].name
 maxProfit = maxProfit - Job[i].profit
 endif
endfor

The complexity of this procedure is: O(n).

One thing to remember, if there are multiple job schedules that can give us maximum profit, we can only find one
job schedule via this procedure.

Section 8.3: Longest Common Subsequence
If we are given with the two strings we have to find the longest common sub-sequence present in both of them.

Example

LCS for input Sequences “ABCDGH” and “AEDFHR” is “ADH” of length 3.

LCS for input Sequences “AGGTAB” and “GXTXAYB” is “GTAB” of length 4.

Implementation in Java

public class LCS {

 public static void main(String[] args) {
 // TODO Auto-generated method stub
 String str1 = "AGGTAB";
 String str2 = "GXTXAYB";
 LCS obj = new LCS();
 System.out.println(obj.lcs(str1, str2, str1.length(), str2.length()));
 System.out.println(obj.lcs2(str1, str2));
 }

 //Recursive function
 public int lcs(String str1, String str2, int m, int n){

Algorithms Notes for Professionals 49

 if(m==0 || n==0)
 return 0;
 if(str1.charAt(m-1) == str2.charAt(n-1))
 return 1 + lcs(str1, str2, m-1, n-1);
 else
 return Math.max(lcs(str1, str2, m-1, n), lcs(str1, str2, m, n-1));
 }

 //Iterative function
 public int lcs2(String str1, String str2){
 int lcs[][] = new int[str1.length()+1][str2.length()+1];

 for(int i=0;i<=str1.length();i++){
 for(int j=0;j<=str2.length();j++){
 if(i==0 || j== 0){
 lcs[i][j] = 0;
 }
 else if(str1.charAt(i-1) == str2.charAt(j-1)){
 lcs[i][j] = 1 + lcs[i-1][j-1];
 }else{
 lcs[i][j] = Math.max(lcs[i-1][j], lcs[i][j-1]);
 }
 }
 }

 return lcs[str1.length()][str2.length()];
 }

}

Output

4

Section 8.4: Fibonacci Number
Bottom up approach for printing the nth Fibonacci number using Dynamic Programming.

Recursive Tree

 fib(5)
 / \
 fib(4) fib(3)
 / \ / \
 fib(3) fib(2) fib(2) fib(1)
 / \ / \ / \
 fib(2) fib(1) fib(1) fib(0) fib(1) fib(0)
 / \
fib(1) fib(0)

Overlapping Sub-problems

Here fib(0),fib(1) and fib(3) are the overlapping sub-problems.fib(0) is getting repeated 3 times, fib(1) is getting
repeated 5 times and fib(3) is getting repeated 2 times.

Implementation

public int fib(int n){
 int f[] = new int[n+1];

Algorithms Notes for Professionals 50

 f[0]=0;f[1]=1;
 for(int i=2;i<=n;i++){
 f[i]=f[i-1]+f[i-2];
 }
 return f[n];
 }

Time Complexity

O(n)

Section 8.5: Longest Common Substring
Given 2 string str1 and str2 we have to find the length of the longest common substring between them.

Examples

Input : X = "abcdxyz", y = "xyzabcd" Output : 4

The longest common substring is "abcd" and is of length 4.

Input : X = "zxabcdezy", y = "yzabcdezx" Output : 6

The longest common substring is "abcdez" and is of length 6.

Implementation in Java

public int getLongestCommonSubstring(String str1,String str2){
 int arr[][] = new int[str2.length()+1][str1.length()+1];
 int max = Integer.MIN_VALUE;
 for(int i=1;i<=str2.length();i++){
 for(int j=1;j<=str1.length();j++){
 if(str1.charAt(j-1) == str2.charAt(i-1)){
 arr[i][j] = arr[i-1][j-1]+1;
 if(arr[i][j]>max)
 max = arr[i][j];
 }
 else
 arr[i][j] = 0;
 }
 }
 return max;
 }

Time Complexity

O(m*n)

Algorithms Notes for Professionals 51

Chapter 9: Kruskal's Algorithm
Section 9.1: Optimal, disjoint-set based implementation
We can do two things to improve the simple and sub-optimal disjoint-set subalgorithms:

Path compression heuristic: findSet does not need to ever handle a tree with height bigger than 2. If it1.
ends up iterating such a tree, it can link the lower nodes directly to the root, optimizing future traversals;

subalgo findSet(v: a node):
 if v.parent != v
 v.parent = findSet(v.parent)
 return v.parent

Height-based merging heuristic: for each node, store the height of its subtree. When merging, make the2.
taller tree the parent of the smaller one, thus not increasing anyone's height.

subalgo unionSet(u, v: nodes):
 vRoot = findSet(v)
 uRoot = findSet(u)

 if vRoot == uRoot:
 return

 if vRoot.height < uRoot.height:
 vRoot.parent = uRoot
 else if vRoot.height > uRoot.height:
 uRoot.parent = vRoot
 else:
 uRoot.parent = vRoot
 uRoot.height = uRoot.height + 1

This leads to O(alpha(n)) time for each operation, where alpha is the inverse of the fast-growing Ackermann
function, thus it is very slow growing, and can be considered O(1) for practical purposes.

This makes the entire Kruskal's algorithm O(m log m + m) = O(m log m), because of the initial sorting.

Note

Path compression may reduce the height of the tree, hence comparing heights of the trees during union operation
might not be a trivial task. Hence to avoid the complexity of storing and calculating the height of the trees the
resulting parent can be picked randomly:

 subalgo unionSet(u, v: nodes):
 vRoot = findSet(v)
 uRoot = findSet(u)

 if vRoot == uRoot:
 return
 if random() % 2 == 0:
 vRoot.parent = uRoot
 else:
 uRoot.parent = vRoot

In practice this randomised algorithm together with path compression for findSet operation will result in

Algorithms Notes for Professionals 52

comparable performance, yet much simpler to implement.

Section 9.2: Simple, more detailed implementation
In order to efficiently handle cycle detection, we consider each node as part of a tree. When adding an edge, we
check if its two component nodes are part of distinct trees. Initially, each node makes up a one-node tree.

algorithm kruskalMST'(G: a graph)
 sort G's edges by their value
 MST = a forest of trees, initially each tree is a node in the graph
 for each edge e in G:
 if the root of the tree that e.first belongs to is not the same
 as the root of the tree that e.second belongs to:
 connect one of the roots to the other, thus merging two trees

 return MST, which now a single-tree forest

Section 9.3: Simple, disjoint-set based implementation
The above forest methodology is actually a disjoint-set data structure, which involves three main operations:

subalgo makeSet(v: a node):
 v.parent = v <- make a new tree rooted at v

subalgo findSet(v: a node):
 if v.parent == v:
 return v
 return findSet(v.parent)

subalgo unionSet(v, u: nodes):
 vRoot = findSet(v)
 uRoot = findSet(u)

 uRoot.parent = vRoot

algorithm kruskalMST''(G: a graph):
 sort G's edges by their value
 for each node n in G:
 makeSet(n)
 for each edge e in G:
 if findSet(e.first) != findSet(e.second):
 unionSet(e.first, e.second)

This naive implementation leads to O(n log n) time for managing the disjoint-set data structure, leading to O(m*n
log n) time for the entire Kruskal's algorithm.

Section 9.4: Simple, high level implementation
Sort the edges by value and add each one to the MST in sorted order, if it doesn't create a cycle.

algorithm kruskalMST(G: a graph)
 sort G's edges by their value
 MST = an empty graph
 for each edge e in G:
 if adding e to MST does not create a cycle:
 add e to MST

Algorithms Notes for Professionals 53

 return MST

Algorithms Notes for Professionals 54

Chapter 10: Greedy Algorithms
Section 10.1: Human Coding
Huffman code is a particular type of optimal prefix code that is commonly used for lossless data compression. It
compresses data very effectively saving from 20% to 90% memory, depending on the characteristics of the data
being compressed. We consider the data to be a sequence of characters. Huffman's greedy algorithm uses a table
giving how often each character occurs (i.e., its frequency) to build up an optimal way of representing each
character as a binary string. Huffman code was proposed by David A. Huffman in 1951.

Suppose we have a 100,000-character data file that we wish to store compactly. We assume that there are only 6
different characters in that file. The frequency of the characters are given by:

+------------------------+-----+-----+-----+-----+-----+-----+
| Character | a | b | c | d | e | f |
+------------------------+-----+-----+-----+-----+-----+-----+
|Frequency (in thousands)| 45 | 13 | 12 | 16 | 9 | 5 |
+------------------------+-----+-----+-----+-----+-----+-----+

We have many options for how to represent such a file of information. Here, we consider the problem of designing
a Binary Character Code in which each character is represented by a unique binary string, which we call a codeword.

The constructed tree will provide us with:

+------------------------+-----+-----+-----+-----+-----+-----+
| Character | a | b | c | d | e | f |
+------------------------+-----+-----+-----+-----+-----+-----+
| Fixed-length Codeword | 000 | 001 | 010 | 011 | 100 | 101 |
+------------------------+-----+-----+-----+-----+-----+-----+
|Variable-length Codeword| 0 | 101 | 100 | 111 | 1101| 1100|
+------------------------+-----+-----+-----+-----+-----+-----+

If we use a fixed-length code, we need three bits to represent 6 characters. This method requires 300,000 bits to
code the entire file. Now the question is, can we do better?

https://en.wikipedia.org/wiki/Huffman_coding
https://en.wikipedia.org/wiki/David_A._Huffman
https://i.stack.imgur.com/VP5UP.jpg

Algorithms Notes for Professionals 55

A variable-length code can do considerably better than a fixed-length code, by giving frequent characters short
codewords and infrequent characters long codewords. This code requires: (45 X 1 + 13 X 3 + 12 X 3 + 16 X 3 + 9 X 4 +
5 X 4) X 1000 = 224000 bits to represent the file, which saves approximately 25% of memory.

One thing to remember, we consider here only codes in which no codeword is also a prefix of some other
codeword. These are called prefix codes. For variable-length coding, we code the 3-character file abc as 0.101.100 =
0101100, where "." denotes the concatenation.

Prefix codes are desirable because they simplify decoding. Since no codeword is a prefix of any other, the
codeword that begins an encoded file is unambiguous. We can simply identify the initial codeword, translate it back
to the original character, and repeat the decoding process on the remainder of the encoded file. For example,
001011101 parses uniquely as 0.0.101.1101, which decodes to aabe. In short, all the combinations of binary
representations are unique. Say for example, if one letter is denoted by 110, no other letter will be denoted by 1101
or 1100. This is because you might face confusion on whether to select 110 or to continue on concatenating the
next bit and select that one.

Compression Technique:

The technique works by creating a binary tree of nodes. These can stored in a regular array, the size of which
depends on the number of symbols, n. A node can either be a leaf node or an internal node. Initially all nodes are
leaf nodes, which contain the symbol itself, its frequency and optionally, a link to its child nodes. As a convention,
bit '0' represents left child and bit '1' represents right child. Priority queue is used to store the nodes, which provides
the node with lowest frequency when popped. The process is described below:

Create a leaf node for each symbol and add it to the priority queue.1.
While there is more than one node in the queue:2.

Remove the two nodes of highest priority from the queue.1.
Create a new internal node with these two nodes as children and with frequency equal to the sum of2.
the two nodes' frequency.
Add the new node to the queue.3.

The remaining node is the root node and the Huffman tree is complete.3.

For our example:

Algorithms Notes for Professionals 56

The pseudo-code looks like:

Procedure Huffman(C): // C is the set of n characters and related information
n = C.size
Q = priority_queue()
for i = 1 to n
 n = node(C[i])
 Q.push(n)
end for
while Q.size() is not equal to 1
 Z = new node()
 Z.left = x = Q.pop
 Z.right = y = Q.pop
 Z.frequency = x.frequency + y.frequency
 Q.push(Z)
end while
Return Q

Although linear-time given sorted input, in general cases of arbitrary input, using this algorithm requires pre-
sorting. Thus, since sorting takes O(nlogn) time in general cases, both methods have same complexity.

Since n here is the number of symbols in the alphabet, which is typically very small number (compared to the
length of the message to be encoded), time complexity is not very important in the choice of this algorithm.

Decompression Technique:

The process of decompression is simply a matter of translating the stream of prefix codes to individual byte value,
usually by traversing the Huffman tree node by node as each bit is read from the input stream. Reaching a leaf
node necessarily terminates the search for that particular byte value. The leaf value represents the desired

https://i.stack.imgur.com/mOobp.jpg

Algorithms Notes for Professionals 57

character. Usually the Huffman Tree is constructed using statistically adjusted data on each compression cycle, thus
the reconstruction is fairly simple. Otherwise, the information to reconstruct the tree must be sent separately. The
pseudo-code:

Procedure HuffmanDecompression(root, S): // root represents the root of Huffman Tree
n := S.length // S refers to bit-stream to be decompressed
for i := 1 to n
 current = root
 while current.left != NULL and current.right != NULL
 if S[i] is equal to '0'
 current := current.left
 else
 current := current.right
 endif
 i := i+1
 endwhile
 print current.symbol
endfor

Greedy Explanation:
Huffman coding looks at the occurrence of each character and stores it as a binary string in an optimal way. The
idea is to assign variable-length codes to input input characters, length of the assigned codes are based on the
frequencies of corresponding characters. We create a binary tree and operate on it in bottom-up manner so that
the least two frequent characters are as far as possible from the root. In this way, the most frequent character gets
the smallest code and the least frequent character gets the largest code.

References:

Introduction to Algorithms - Charles E. Leiserson, Clifford Stein, Ronald Rivest, and Thomas H. Cormen
Huffman Coding - Wikipedia
Discrete Mathematics and Its Applications - Kenneth H. Rosen

Section 10.2: Activity Selection Problem
The Problem

You have a set of things to do (activities). Each activity has a start time and a end time. You aren't allowed to
perform more than one activity at a time. Your task is to find a way to perform the maximum number of activities.

For example, suppose you have a selection of classes to choose from.

Activity No. start time end time
1 10.20 A.M 11.00AM
2 10.30 A.M 11.30AM
3 11.00 A.M 12.00AM
4 10.00 A.M 11.30AM
5 9.00 A.M 11.00AM

Remember, you can't take two classes at the same time. That means you can't take class 1 and 2 because they
share a common time 10.30 A.M to 11.00 A.M. However, you can take class 1 and 3 because they don't share a
common time. So your task is to take maximum number of classes as possible without any overlap. How can you
do that?

Analysis

Lets think for the solution by greedy approach.First of all we randomly chose some approach and check that will

https://en.wikipedia.org/wiki/Huffman_coding

Algorithms Notes for Professionals 58

work or not.

sort the activity by start time that means which activity start first we will take them first. then take first to
last from sorted list and check it will intersect from previous taken activity or not. If the current activity is not
intersect with the previously taken activity, we will perform the activity otherwise we will not perform. this
approach will work for some cases like

Activity No. start time end time
1 11.00 A.M 1.30P.M
2 11.30 A.M 12.00P.M
3 1.30 P.M 2.00P.M
4 10.00 A.M 11.00AM

the sorting order will be 4-->1-->2-->3 .The activity 4--> 1--> 3 will be performed and the activity 2 will be skipped.
the maximum 3 activity will be performed. It works for this type of cases. but it will fail for some cases. Lets apply
this approach for the case

Activity No. start time end time
1 11.00 A.M 1.30P.M
2 11.30 A.M 12.00P.M
3 1.30 P.M 2.00P.M
4 10.00 A.M 3.00P.M

The sort order will be 4-->1-->2-->3 and only activity 4 will be performed but the answer can be activity 1-->3 or 2-
->3 will be performed. So our approach will not work for the above case. Let's try another approach

Sort the activity by time duration that means perform the shortest activity first. that can solve the previous
problem . Although the problem is not completely solved. There still some cases that can fail the solution.
apply this approach on the case bellow.

Activity No. start time end time
1 6.00 A.M 11.40A.M
2 11.30 A.M 12.00P.M
3 11.40 P.M 2.00P.M

if we sort the activity by time duration the sort order will be 2--> 3 --->1 . and if we perform activity No. 2 first then
no other activity can be performed. But the answer will be perform activity 1 then perform 3 . So we can perform
maximum 2 activity.So this can not be a solution of this problem. We should try a different approach.

The solution

Sort the Activity by ending time that means the activity finishes first that come first. the algorithm is given
below

Sort the activities by its ending times.1.
If the activity to be performed do not share a common time with the activities that previously2.
performed, perform the activity.

Lets analyse the first example

Activity No. start time end time
1 10.20 A.M 11.00AM
2 10.30 A.M 11.30AM
3 11.00 A.M 12.00AM
4 10.00 A.M 11.30AM

Algorithms Notes for Professionals 59

5 9.00 A.M 11.00AM

sort the activity by its ending times , So sort order will be 1-->5-->2-->4-->3.. the answer is 1-->3 these two activities
will be performed. ans that's the answer. here is the sudo code.

sort: activities1.
perform first activity from the sorted list of activities.2.
Set : Current_activity := first activity3.
set: end_time := end_time of Current activity4.
go to next activity if exist, if not exist terminate .5.
if start_time of current activity <= end_time : perform the activity and go to 46.
else: got to 5.7.

see here for coding help http://www.geeksforgeeks.org/greedy-algorithms-set-1-activity-selection-problem/

Section 10.3: Change-making problem
Given a money system, is it possible to give an amount of coins and how to find a minimal set of coins
corresponding to this amount.

Canonical money systems. For some money system, like the ones we use in the real life, the "intuitive" solution
works perfectly. For example, if the different euro coins and bills (excluding cents) are 1€, 2€, 5€, 10€, giving the
highest coin or bill until we reach the amount and repeating this procedure will lead to the minimal set of coins.

We can do that recursively with OCaml :

(* assuming the money system is sorted in decreasing order *)
let change_make money_system amount =
 let rec loop given amount =
 if amount = 0 then given
 else
 (* we find the first value smaller or equal to the remaining amount *)
 let coin = List.find ((>=) amount) money_system in
 loop (coin::given) (amount - coin)
 in loop [] amount

These systems are made so that change-making is easy. The problem gets harder when it comes to arbitrary money
system.

General case. How to give 99€ with coins of 10€, 7€ and 5€? Here, giving coins of 10€ until we are left with 9€ leads
obviously to no solution. Worse than that a solution may not exist. This problem is in fact np-hard, but acceptable
solutions mixing greediness and memoization exist. The idea is to explore all the possibilies and pick the one with
the minimal number of coins.

To give an amount X > 0, we choose a piece P in the money system, and then solve the sub-problem corresponding
to X-P. We try this for all the pieces of the system. The solution, if it exists, is then the smallest path that led to 0.

Here an OCaml recursive function corresponding to this method. It returns None, if no solution exists.

(* option utilities *)
let optmin x y =
 match x,y with
 | None,a | a,None -> a
 | Some x, Some y-> Some (min x y)

http://www.geeksforgeeks.org/greedy-algorithms-set-1-activity-selection-problem/

Algorithms Notes for Professionals 60

let optsucc = function
 | Some x -> Some (x+1)
 | None -> None

(* Change-making problem*)
let change_make money_system amount =
 let rec loop n =
 let onepiece acc piece =
 match n - piece with
 | 0 -> (*problem solved with one coin*)
 Some 1
 | x -> if x < 0 then
 (*we don't reach 0, we discard this solution*)
 None
 else
 (*we search the smallest path different to None with the remaining pieces*)
 optmin (optsucc (loop x)) acc
 in
 (*we call onepiece forall the pieces*)
 List.fold_left onepiece None money_system
 in loop amount

Note: We can remark that this procedure may compute several times the change set for the same value. In
practice, using memoization to avoid these repetitions leads to faster (way faster) results.

Algorithms Notes for Professionals 61

Chapter 11: Applications of Greedy
technique
Section 11.1: Oine Caching
The caching problem arises from the limitation of finite space. Lets assume our cache C has k pages. Now we want
to process a sequence of m item requests which must have been placed in the cache before they are processed.Of
course if m<=k then we just put all elements in the cache and it will work, but usually is m>>k.

We say a request is a cache hit, when the item is already in cache, otherwise its called a cache miss. In that case
we must bring the requested item into cache and evict another, assuming the cache is full. The Goal is a eviction
schedule that minimizes the number of evictions.

There are numerous greedy strategies for this problem, lets look at some:

First in, first out (FIFO): The oldest page gets evicted1.
Last in, first out (LIFO): The newest page gets evicted2.
Last recent out (LRU): Evict page whose most recent access was earliest3.
Least frequently requested(LFU): Evict page that was least frequently requested4.
Longest forward distance (LFD): Evict page in the cache that is not requested until farthest in the future.5.

Attention: For the following examples we evict the page with the smallest index, if more than one page could be
evicted.

Example (FIFO)

Let the cache size be k=3 the initial cache a,b,c and the request a,a,d,e,b,b,a,c,f,d,e,a,f,b,e,c:

Request a a d e b b a c f d e a f b e c
cache 1 a a d d d d a a a d d d f f f c
cache 2 b b b e e e e c c c e e e b b b
cache 3 c c c c b b b b f f f a a a e e

cache miss x x x x x x x x x x x x x

Thirteen cache misses by sixteen requests does not sound very optimal, lets try the same example with another
strategy:

Example (LFD)

Let the cache size be k=3 the initial cache a,b,c and the request a,a,d,e,b,b,a,c,f,d,e,a,f,b,e,c:

Request a a d e b b a c f d e a f b e c
cache 1 a a d e e e e e e e e e e e e c
cache 2 b b b b b b a a a a a a f f f f
cache 3 c c c c c c c c f d d d d b b b

cache miss x x x x x x x x

Eight cache misses is a lot better.

Selftest: Do the example for LIFO, LFU, RFU and look what happend.

The following example programm (written in C++) consists of two parts:

The skeleton is a application, which solves the problem dependent on the chosen greedy strategy:

Algorithms Notes for Professionals 62

#include <iostream>
#include <memory>

using namespace std;

const int cacheSize = 3;
const int requestLength = 16;

const char request[] = {'a','a','d','e','b','b','a','c','f','d','e','a','f','b','e','c'};
char cache[] = {'a','b','c'};

// for reset
char originalCache[] = {'a','b','c'};

class Strategy {

public:
 Strategy(std::string name) : strategyName(name) {}
 virtual ~Strategy() = default;

 // calculate which cache place should be used
 virtual int apply(int requestIndex) = 0;

 // updates information the strategy needs
 virtual void update(int cachePlace, int requestIndex, bool cacheMiss) = 0;

 const std::string strategyName;
};

bool updateCache(int requestIndex, Strategy* strategy)
{
 // calculate where to put request
 int cachePlace = strategy->apply(requestIndex);

 // proof whether its a cache hit or a cache miss
 bool isMiss = request[requestIndex] != cache[cachePlace];

 // update strategy (for example recount distances)
 strategy->update(cachePlace, requestIndex, isMiss);

 // write to cache
 cache[cachePlace] = request[requestIndex];

 return isMiss;
}

int main()
{
 Strategy* selectedStrategy[] = { new FIFO, new LIFO, new LRU, new LFU, new LFD };

 for (int strat=0; strat < 5; ++strat)
 {
 // reset cache
 for (int i=0; i < cacheSize; ++i) cache[i] = originalCache[i];

 cout <<"\nStrategy: " << selectedStrategy[strat]->strategyName << endl;

 cout << "\nCache initial: (";
 for (int i=0; i < cacheSize-1; ++i) cout << cache[i] << ",";
 cout << cache[cacheSize-1] << ")\n\n";

Algorithms Notes for Professionals 63

 cout << "Request\t";
 for (int i=0; i < cacheSize; ++i) cout << "cache " << i << "\t";
 cout << "cache miss" << endl;

 int cntMisses = 0;

 for(int i=0; i<requestLength; ++i)
 {
 bool isMiss = updateCache(i, selectedStrategy[strat]);
 if (isMiss) ++cntMisses;

 cout << " " << request[i] << "\t";
 for (int l=0; l < cacheSize; ++l) cout << " " << cache[l] << "\t";
 cout << (isMiss ? "x" : "") << endl;
 }

 cout<< "\nTotal cache misses: " << cntMisses << endl;
 }

 for(int i=0; i<5; ++i) delete selectedStrategy[i];
}

The basic idea is simple: for every request I have two calls two my strategy:

apply: The strategy has to tell the caller which page to use1.
update: After the caller uses the place, it tells the strategy whether it was a miss or not. Then the strategy2.
may update its internal data. The strategy LFU for example has to update the hit frequency for the cache
pages, while the LFD strategy has to recalculate the distances for the cache pages.

Now lets look of example implementations for our five strategies:

FIFO
class FIFO : public Strategy {
public:
 FIFO() : Strategy("FIFO")
 {
 for (int i=0; i<cacheSize; ++i) age[i] = 0;
 }

 int apply(int requestIndex) override
 {
 int oldest = 0;

 for(int i=0; i<cacheSize; ++i)
 {
 if(cache[i] == request[requestIndex])
 return i;

 else if(age[i] > age[oldest])
 oldest = i;
 }

 return oldest;
 }

 void update(int cachePos, int requestIndex, bool cacheMiss) override
 {
 // nothing changed we don't need to update the ages
 if(!cacheMiss)
 return;

Algorithms Notes for Professionals 64

 // all old pages get older, the new one get 0
 for(int i=0; i<cacheSize; ++i)
 {
 if(i != cachePos)
 age[i]++;

 else
 age[i] = 0;
 }
 }

private:
 int age[cacheSize];
};

FIFO just needs the information how long a page is in the cache (and of course only relative to the other pages). So
the only thing to do is wait for a miss and then make the pages, which where not evicted older. For our example
above the program solution is:

Strategy: FIFO

Cache initial: (a,b,c)

Request cache 0 cache 1 cache 2 cache miss
 a a b c
 a a b c
 d d b c x
 e d e c x
 b d e b x
 b d e b
 a a e b x
 c a c b x
 f a c f x
 d d c f x
 e d e f x
 a d e a x
 f f e a x
 b f b a x
 e f b e x
 c c b e x

Total cache misses: 13

Thats exact the solution from above.

LIFO
class LIFO : public Strategy {
public:
 LIFO() : Strategy("LIFO")
 {
 for (int i=0; i<cacheSize; ++i) age[i] = 0;
 }

 int apply(int requestIndex) override
 {
 int newest = 0;

 for(int i=0; i<cacheSize; ++i)
 {
 if(cache[i] == request[requestIndex])

Algorithms Notes for Professionals 65

 return i;

 else if(age[i] < age[newest])
 newest = i;
 }

 return newest;
 }

 void update(int cachePos, int requestIndex, bool cacheMiss) override
 {
 // nothing changed we don't need to update the ages
 if(!cacheMiss)
 return;

 // all old pages get older, the new one get 0
 for(int i=0; i<cacheSize; ++i)
 {
 if(i != cachePos)
 age[i]++;

 else
 age[i] = 0;
 }
 }

private:
 int age[cacheSize];
};

The implementation of LIFO is more or less the same as by FIFO but we evict the youngest not the oldest page. The
program results are:

Strategy: LIFO

Cache initial: (a,b,c)

Request cache 0 cache 1 cache 2 cache miss
 a a b c
 a a b c
 d d b c x
 e e b c x
 b e b c
 b e b c
 a a b c x
 c a b c
 f f b c x
 d d b c x
 e e b c x
 a a b c x
 f f b c x
 b f b c
 e e b c x
 c e b c

Total cache misses: 9

LRU
class LRU : public Strategy {
public:
 LRU() : Strategy("LRU")

Algorithms Notes for Professionals 66

 {
 for (int i=0; i<cacheSize; ++i) age[i] = 0;
 }

 // here oldest mean not used the longest
 int apply(int requestIndex) override
 {
 int oldest = 0;

 for(int i=0; i<cacheSize; ++i)
 {
 if(cache[i] == request[requestIndex])
 return i;

 else if(age[i] > age[oldest])
 oldest = i;
 }

 return oldest;
 }

 void update(int cachePos, int requestIndex, bool cacheMiss) override
 {
 // all old pages get older, the used one get 0
 for(int i=0; i<cacheSize; ++i)
 {
 if(i != cachePos)
 age[i]++;

 else
 age[i] = 0;
 }
 }

private:
 int age[cacheSize];
};

In case of LRU the strategy is independent from what is at the cache page, its only interest is the last usage. The
programm results are:

Strategy: LRU

Cache initial: (a,b,c)

Request cache 0 cache 1 cache 2 cache miss
 a a b c
 a a b c
 d a d c x
 e a d e x
 b b d e x
 b b d e
 a b a e x
 c b a c x
 f f a c x
 d f d c x
 e f d e x
 a a d e x
 f a f e x
 b a f b x
 e e f b x

Algorithms Notes for Professionals 67

 c e c b x

Total cache misses: 13

LFU
class LFU : public Strategy {
public:
 LFU() : Strategy("LFU")
 {
 for (int i=0; i<cacheSize; ++i) requestFrequency[i] = 0;
 }

 int apply(int requestIndex) override
 {
 int least = 0;

 for(int i=0; i<cacheSize; ++i)
 {
 if(cache[i] == request[requestIndex])
 return i;

 else if(requestFrequency[i] < requestFrequency[least])
 least = i;
 }

 return least;
 }

 void update(int cachePos, int requestIndex, bool cacheMiss) override
 {
 if(cacheMiss)
 requestFrequency[cachePos] = 1;

 else
 ++requestFrequency[cachePos];
 }

private:

 // how frequently was the page used
 int requestFrequency[cacheSize];
};

LFU evicts the page uses least often. So the update strategy is just to count every access. Of course after a miss the
count resets. The program results are:

Strategy: LFU

Cache initial: (a,b,c)

Request cache 0 cache 1 cache 2 cache miss
 a a b c
 a a b c
 d a d c x
 e a d e x
 b a b e x
 b a b e
 a a b e
 c a b c x
 f a b f x
 d a b d x

Algorithms Notes for Professionals 68

 e a b e x
 a a b e
 f a b f x
 b a b f
 e a b e x
 c a b c x

Total cache misses: 10

LFD
class LFD : public Strategy {
public:
 LFD() : Strategy("LFD")
 {
 // precalc next usage before starting to fullfill requests
 for (int i=0; i<cacheSize; ++i) nextUse[i] = calcNextUse(-1, cache[i]);
 }

 int apply(int requestIndex) override
 {
 int latest = 0;

 for(int i=0; i<cacheSize; ++i)
 {
 if(cache[i] == request[requestIndex])
 return i;

 else if(nextUse[i] > nextUse[latest])
 latest = i;
 }

 return latest;
 }

 void update(int cachePos, int requestIndex, bool cacheMiss) override
 {
 nextUse[cachePos] = calcNextUse(requestIndex, cache[cachePos]);
 }

private:

 int calcNextUse(int requestPosition, char pageItem)
 {
 for(int i = requestPosition+1; i < requestLength; ++i)
 {
 if (request[i] == pageItem)
 return i;
 }

 return requestLength + 1;
 }

 // next usage of page
 int nextUse[cacheSize];
};

The LFD strategy is different from everyone before. Its the only strategy that uses the future requests for its
decission who to evict. The implementation uses the function calcNextUse to get the page which next use is
farthest away in the future. The program solution is equal to the solution by hand from above:

Strategy: LFD

Algorithms Notes for Professionals 69

Cache initial: (a,b,c)

Request cache 0 cache 1 cache 2 cache miss
 a a b c
 a a b c
 d a b d x
 e a b e x
 b a b e
 b a b e
 a a b e
 c a c e x
 f a f e x
 d a d e x
 e a d e
 a a d e
 f f d e x
 b b d e x
 e b d e
 c c d e x

Total cache misses: 8

The greedy strategy LFD is indeed the only optimal strategy of the five presented. The proof is rather long and can
be found here or in the book by Jon Kleinberg and Eva Tardos (see sources in remarks down below).

Algorithm vs Reality

The LFD strategy is optimal, but there is a big problem. Its an optimal offline solution. In praxis caching is usually
an online problem, that means the strategy is useless because we cannot now the next time we need a particular
item. The other four strategies are also online strategies. For online problems we need a general different
approach.

Section 11.2: Ticket automat
First simple Example:

You have a ticket automat which gives exchange in coins with values 1, 2, 5, 10 and 20. The dispension of the
exchange can be seen as a series of coin drops until the right value is dispensed. We say a dispension is optimal
when its coin count is minimal for its value.

Let M in [1,50] be the price for the ticket T and P in [1,50] the money somebody paid for T, with P >= M. Let D=P-M.
We define the benefit of a step as the difference between D and D-c with c the coin the automat dispense in this
step.

The Greedy Technique for the exchange is the following pseudo algorithmic approach:

Step 1: while D > 20 dispense a 20 coin and set D = D - 20
Step 2: while D > 10 dispense a 10 coin and set D = D - 10
Step 3: while D > 5 dispense a 5 coin and set D = D - 5
Step 4: while D > 2 dispense a 2 coin and set D = D - 2
Step 5: while D > 1 dispense a 1 coin and set D = D - 1

Afterwards the sum of all coins clearly equals D. Its a greedy algorithm because after each step and after each
repitition of a step the benefit is maximized. We cannot dispense another coin with a higher benefit.

Now the ticket automat as program (in C++):

https://blog.henrypoon.com/blog/2014/02/02/proof-of-the-farthest-in-future-optimal-caching-algorithm/

Algorithms Notes for Professionals 70

#include <iostream>
#include <vector>
#include <string>
#include <algorithm>

using namespace std;

// read some coin values, sort them descending,
// purge copies and guaratee the 1 coin is in it
std::vector<unsigned int> readInCoinValues();

int main()
{
 std::vector<unsigned int> coinValues; // Array of coin values ascending
 int ticketPrice; // M in example
 int paidMoney; // P in example

 // generate coin values
 coinValues = readInCoinValues();

 cout << "ticket price: ";
 cin >> ticketPrice;

 cout << "money paid: ";
 cin >> paidMoney;

 if(paidMoney <= ticketPrice)
 {
 cout << "No exchange money" << endl;
 return 1;
 }

 int diffValue = paidMoney - ticketPrice;

 // Here starts greedy

 // we save how many coins we have to give out
 std::vector<unsigned int> coinCount;

 for(auto coinValue = coinValues.begin();
 coinValue != coinValues.end(); ++coinValue)
 {
 int countCoins = 0;

 while (diffValue >= *coinValue)
 {
 diffValue -= *coinValue;
 countCoins++;
 }

 coinCount.push_back(countCoins);
 }

 // print out result
 cout << "the difference " << paidMoney - ticketPrice
 << " is paid with: " << endl;

 for(unsigned int i=0; i < coinValues.size(); ++i)
 {
 if(coinCount[i] > 0)
 cout << coinCount[i] << " coins with value "
 << coinValues[i] << endl;

Algorithms Notes for Professionals 71

 }

 return 0;
}

std::vector<unsigned int> readInCoinValues()
{
 // coin values
 std::vector<unsigned int> coinValues;

 // make sure 1 is in vectore
 coinValues.push_back(1);

 // read in coin values (attention: error handling is omitted)
 while(true)
 {
 int coinValue;

 cout << "Coin value (<1 to stop): ";
 cin >> coinValue;

 if(coinValue > 0)
 coinValues.push_back(coinValue);

 else
 break;
 }

 // sort values
 sort(coinValues.begin(), coinValues.end(), std::greater<int>());

 // erase copies of same value
 auto last = std::unique(coinValues.begin(), coinValues.end());
 coinValues.erase(last, coinValues.end());

 // print array
 cout << "Coin values: ";

 for(auto i : coinValues)
 cout << i << " ";

 cout << endl;

 return coinValues;
}

Be aware there is now input checking to keep the example simple. One example output:

Coin value (<1 to stop): 2
Coin value (<1 to stop): 4
Coin value (<1 to stop): 7
Coin value (<1 to stop): 9
Coin value (<1 to stop): 14
Coin value (<1 to stop): 4
Coin value (<1 to stop): 0
Coin values: 14 9 7 4 2 1
ticket price: 34
money paid: 67
the difference 33 is paid with:
2 coins with value 14
1 coins with value 4

Algorithms Notes for Professionals 72

1 coins with value 1

As long as 1 is in the coin values we now, that the algorithm will terminate, because:

D strictly decreases with every step
D is never >0 and smaller than than the smallest coin 1 at the same time

But the algorithm has two pitfalls:

Let C be the biggest coin value. The runtime is only polynomial as long as D/C is polynomial, because the1.
representation of D uses only log D bits and the runtime is at least linear in D/C.
In every step our algorithm chooses the local optimum. But this is not sufficient to say that the algorithm2.
finds the global optimal solution (see more informations here or in the Book of Korte and Vygen).

A simple counter example: the coins are 1,3,4 and D=6. The optimal solution is clearly two coins of value 3 but
greedy chooses 4 in the first step so it has to choose 1 in step two and three. So it gives no optimal soution. A
possible optimal Algorithm for this example is based on dynamic programming.

Section 11.3: Interval Scheduling
We have a set of jobs J={a,b,c,d,e,f,g}. Let j in J be a job than its start at sj and ends at fj. Two jobs are
compatible if they don't overlap. A picture as example:

The goal is to find the maximum subset of mutually compatible jobs. There are several greedy approaches for
this problem:

Earliest start time: Consider jobs in ascending order of sj1.
Earliest finish time: Consider jobs in ascending order of fj2.
Shortest interval: Consider jobs in ascending order of fj-sj3.
Fewest conflicts: For each job j, count the number of conflicting jobs cj4.

The question now is, which approach is really successfull. Early start time definetly not, here is a counter example

https://en.wikipedia.org/wiki/Matroid
http://www.or.uni-bonn.de/%7Evygen/co.html
https://postimg.org/image/6etvj3k81/
https://postimg.org/image/x8zfx2zq9/

Algorithms Notes for Professionals 73

Shortest interval is not optimal either

and fewest conflicts may indeed sound optimal, but here is a problem case for this approach:

Which leaves us with earliest finish time. The pseudo code is quiet simple:

Sort jobs by finish time so that f1<=f2<=...<=fn1.
Let A be an empty set2.
for j=1 to n if j is compatible to all jobs in A set A=A+{j}3.
A is a maximum subset of mutually compatible jobs4.

Or as C++ program:

#include <iostream>
#include <utility>
#include <tuple>
#include <vector>
#include <algorithm>

const int jobCnt = 10;

// Job start times
const int startTimes[] = { 2, 3, 1, 4, 3, 2, 6, 7, 8, 9};

// Job end times
const int endTimes[] = { 4, 4, 3, 5, 5, 5, 8, 9, 9, 10};

using namespace std;

int main()
{
 vector<pair<int,int>> jobs;

 for(int i=0; i<jobCnt; ++i)
 jobs.push_back(make_pair(startTimes[i], endTimes[i]));

 // step 1: sort
 sort(jobs.begin(), jobs.end(),[](pair<int,int> p1, pair<int,int> p2)
 { return p1.second < p2.second; });

 // step 2: empty set A
 vector<int> A;

 // step 3:
 for(int i=0; i<jobCnt; ++i)
 {

https://postimg.org/image/m4npmnkur/
https://postimg.org/image/48f87mmol/

Algorithms Notes for Professionals 74

 auto job = jobs[i];
 bool isCompatible = true;

 for(auto jobIndex : A)
 {
 // test whether the actual job and the job from A are incompatible
 if(job.second >= jobs[jobIndex].first &&
 job.first <= jobs[jobIndex].second)
 {
 isCompatible = false;
 break;
 }
 }

 if(isCompatible)
 A.push_back(i);
 }

 //step 4: print A
 cout << "Compatible: ";

 for(auto i : A)
 cout << "(" << jobs[i].first << "," << jobs[i].second << ") ";
 cout << endl;

 return 0;
}

The output for this example is: Compatible: (1,3) (4,5) (6,8) (9,10)

The implementation of the algorithm is clearly in ?(n^2). There is a ?(n log n) implementation and the interested
reader may continue reading below (Java Example).

Now we have a greedy algorithm for the interval scheduling problem, but is it optimal?

Proposition: The greedy algorithm earliest finish time is optimal.

Proof:(by contradiction)

Assume greedy is not optimal and i1,i2,...,ik denote the set of jobs selected by greedy. Let j1,j2,...,jm
denote the set of jobs in an optimal solution with i1=j1,i2=j2,...,ir=jr for the largest possible value of r.

The job i(r+1) exists and finishes before j(r+1) (earliest finish). But than is j1,j2,...,jr,i(r+1),j(r+2),...,jm
also a optimal solution and for all k in [1,(r+1)] is jk=ik. thats a contradiction to the maximality of r. This
concludes the proof.

This second example demonstrates that there are usually many possible greedy strategies but only some or even
none might find the optimal solution in every instance.

Below is a Java program that runs in ?(n log n)

import java.util.Arrays;
import java.util.Comparator;

class Job
{
 int start, finish, profit;

 Job(int start, int finish, int profit)

Algorithms Notes for Professionals 75

 {
 this.start = start;
 this.finish = finish;
 this.profit = profit;
 }
}

class JobComparator implements Comparator<Job>
{
 public int compare(Job a, Job b)
 {
 return a.finish < b.finish ? -1 : a.finish == b.finish ? 0 : 1;
 }
}

public class WeightedIntervalScheduling
{
 static public int binarySearch(Job jobs[], int index)
 {
 int lo = 0, hi = index - 1;

 while (lo <= hi)
 {
 int mid = (lo + hi) / 2;
 if (jobs[mid].finish <= jobs[index].start)
 {
 if (jobs[mid + 1].finish <= jobs[index].start)
 lo = mid + 1;
 else
 return mid;
 }
 else
 hi = mid - 1;
 }

 return -1;
 }

 static public int schedule(Job jobs[])
 {
 Arrays.sort(jobs, new JobComparator());

 int n = jobs.length;
 int table[] = new int[n];
 table[0] = jobs[0].profit;

 for (int i=1; i<n; i++)
 {
 int inclProf = jobs[i].profit;
 int l = binarySearch(jobs, i);
 if (l != -1)
 inclProf += table[l];

 table[i] = Math.max(inclProf, table[i-1]);
 }

 return table[n-1];
 }

 public static void main(String[] args)
 {

Algorithms Notes for Professionals 76

 Job jobs[] = {new Job(1, 2, 50), new Job(3, 5, 20),
 new Job(6, 19, 100), new Job(2, 100, 200)};

 System.out.println("Optimal profit is " + schedule(jobs));
 }
}

And the expected output is:

Optimal profit is 250

Section 11.4: Minimizing Lateness
There are numerous problems minimizing lateness, here we have a single resource which can only process one job
at a time. Job j requires tj units of processing time and is due at time dj. if j starts at time sj it will finish at time
fj=sj+tj. We define lateness L=max{0,fj-dh} for all j. The goal is to minimize the maximum lateness L.

1 2 3 4 5 6
tj 3 2 1 4 3 2
dj 6 8 9 9 10 11
Job 3 2 2 5 5 5 4 4 4 4 1 1 1 6 6

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Lj -8 -5 -4 1 7 4

The solution L=7 is obviously not optimal. Lets look at some greedy strategies:

Shortest processing time first: schedule jobs in ascending order og processing time j`1.
Earliest deadline first: Schedule jobs in ascending order of deadline dj2.
Smallest slack: schedule jobs in ascending order of slack dj-tj3.

Its easy to see that shortest processing time first is not optimal a good counter example is

1 2
tj 1 5
dj 10 5

the smallest stack solution has simillar problems

1 2
tj 1 5
dj 3 5

the last strategy looks valid so we start with some pseudo code:

Sort n jobs by due time so that d1<=d2<=...<=dn1.
Set t=02.
for j=1 to n3.

Assign job j to interval [t,t+tj]
set sj=t and fj=t+tj
set t=t+tj

return intervals [s1,f1],[s2,f2],...,[sn,fn]4.

And as implementation in C++:

#include <iostream>

Algorithms Notes for Professionals 77

#include <utility>
#include <tuple>
#include <vector>
#include <algorithm>

const int jobCnt = 10;

// Job start times
const int processTimes[] = { 2, 3, 1, 4, 3, 2, 3, 5, 2, 1};

// Job end times
const int dueTimes[] = { 4, 7, 9, 13, 8, 17, 9, 11, 22, 25};

using namespace std;

int main()
{
 vector<pair<int,int>> jobs;

 for(int i=0; i<jobCnt; ++i)
 jobs.push_back(make_pair(processTimes[i], dueTimes[i]));

 // step 1: sort
 sort(jobs.begin(), jobs.end(),[](pair<int,int> p1, pair<int,int> p2)
 { return p1.second < p2.second; });

 // step 2: set t=0
 int t = 0;

 // step 3:
 vector<pair<int,int>> jobIntervals;

 for(int i=0; i<jobCnt; ++i)
 {
 jobIntervals.push_back(make_pair(t,t+jobs[i].first));
 t += jobs[i].first;
 }

 //step 4: print intervals
 cout << "Intervals:\n" << endl;

 int lateness = 0;

 for(int i=0; i<jobCnt; ++i)
 {
 auto pair = jobIntervals[i];

 lateness = max(lateness, pair.second-jobs[i].second);

 cout << "(" << pair.first << "," << pair.second << ") "
 << "Lateness: " << pair.second-jobs[i].second << std::endl;
 }

 cout << "\nmaximal lateness is " << lateness << endl;

 return 0;
}

And the output for this program is:

Intervals:

Algorithms Notes for Professionals 78

(0,2) Lateness:-2
(2,5) Lateness:-2
(5,8) Lateness: 0
(8,9) Lateness: 0
(9,12) Lateness: 3
(12,17) Lateness: 6
(17,21) Lateness: 8
(21,23) Lateness: 6
(23,25) Lateness: 3
(25,26) Lateness: 1

maximal lateness is 8

The runtime of the algorithm is obviously ?(n log n) because sorting is the dominating operation of this algorithm.
Now we need to show that it is optimal. Clearly an optimal schedule has no idle time. the earliest deadline first
schedule has also no idle time.

Lets assume the jobs are numbered so that d1<=d2<=...<=dn. We say a inversion of a schedule is a pair of jobs i
and j so that i<j but j is scheduled before i. Due to its definition the earliest deadline first schedule has no
inversions. Of course if a schedule has an inversion it has one with a pair of inverted jobs scheduled consecutively.

Proposition: Swapping two adjacent, inverted jobs reduces the number of inversions by one and does not
increase the maximal lateness.

Proof: Let L be the lateness before the swap and M the lateness afterwards. Because exchanging two adjacent jobs
does not move the other jobs from their position it is Lk=Mk for all k != i,j.

Clearly it is Mi<=Li since job i got scheduled earlier. if job j is late, so follows from the definition:

 Mj = fi-dj (definition)
 <= fi-di (since i and j are exchanged)
 <= Li

That means the lateness after swap is less or equal than before. This concludes the proof.

Proposition: The earliest deadline first schedule S is optimal.

Proof:(by contradiction)

Lets assume S* is optimal schedule with the fewest possible number of inversions. we can assume that S* has no
idle time. If S* has no inversions, then S=S* and we are done. If S* has an inversion, than it has an adjacent
inversion. The last Proposition states that we can swap the adjacent inversion without increasing lateness but with
decreasing the number of inversions. This contradicts the definition of S*.

The minimizing lateness problem and its near related minimum makespan problem, where the question for a
minimal schedule is asked have lots of applications in the real world. But usually you don't have only one machine
but many and they handle the same task at different rates. These problems get NP-complete really fast.

Another interesting question arises if we don't look at the offline problem, where we have all tasks and data at
hand but at the online variant, where tasks appear during execution.

Algorithms Notes for Professionals 79

Chapter 12: Prim's Algorithm
Section 12.1: Introduction To Prim's Algorithm
Let's say we have 8 houses. We want to setup telephone lines between these houses. The edge between the houses
represent the cost of setting line between two houses.

Our task is to set up lines in such a way that all the houses are connected and the cost of setting up the whole
connection is minimum. Now how do we find that out? We can use Prim's Algorithm.

Prim's Algorithm is a greedy algorithm that finds a minimum spanning tree for a weighted undirected graph. This
means it finds a subset of the edges that forms a tree that includes every node, where the total weight of all the
edges in the tree are minimized. The algorithm was developed in 1930 by Czech mathematician Vojt?ch Jarník and
later rediscovered and republished by computer scientist Robert Clay Prim in 1957 and Edsger Wybe Dijkstra in
1959. It is also known as DJP algorithm, Jarnik's algorithm, Prim-Jarnik algorithm or Prim-Dijsktra algorithm.

Now let's look at the technical terms first. If we create a graph, S using some nodes and edges of an undirected
graph G, then S is called a subgraph of the graph G. Now S will be called a Spanning Tree if and only if:

It contains all the nodes of G.
It is a tree, that means there is no cycle and all the nodes are connected.
There are (n-1) edges in the tree, where n is the number of nodes in G.

There can be many Spanning Tree's of a graph. The Minimum Spanning Tree of a weighted undirected graph is a
tree, such that sum of the weight of the edges is minimum. Now we'll use Prim's algorithm to find out the
minimum spanning tree, that is how to set up the telephone lines in our example graph in such way that the cost of
set up is minimum.

At first we'll select a source node. Let's say, node-1 is our source. Now we'll add the edge from node-1 that has the
minimum cost to our subgraph. Here we mark the edges that are in the subgraph using the color blue. Here 1-5 is

https://i.stack.imgur.com/DAoCJ.png
https://en.wikipedia.org/wiki/Prim%27s_algorithm
https://en.wikipedia.org/wiki/Vojt%C4%9Bch_Jarn%C3%ADk
https://en.wikipedia.org/wiki/Vojt%C4%9Bch_Jarn%C3%ADk
https://en.wikipedia.org/wiki/Vojt%C4%9Bch_Jarn%C3%ADk
https://en.wikipedia.org/wiki/Robert_C._Prim
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra

Algorithms Notes for Professionals 80

our desired edge.

Now we consider all the edges from node-1 and node-5 and take the minimum. Since 1-5 is already marked, we

take 1-2.

This time, we consider node-1, node-2 and node-5 and take the minimum edge which is 5-4.

https://i.stack.imgur.com/Vc4qL.png
https://i.stack.imgur.com/N85Jm.png

Algorithms Notes for Professionals 81

The next step is important. From node-1, node-2, node-5 and node-4, the minimum edge is 2-4. But if we select
that one, it'll create a cycle in our subgraph. This is because node-2 and node-4 are already in our subgraph. So
taking edge 2-4 doesn't benefit us. We'll select the edges in such way that it adds a new node in our subgraph. So we

select edge 4-8.

If we continue this way, we'll select edge 8-6, 6-7 and 4-3. Our subgraph will look like:

https://i.stack.imgur.com/wyzXK.png
https://i.stack.imgur.com/XOQT3.png

Algorithms Notes for Professionals 82

This is our desired subgraph, that'll give us the minimum spanning tree. If we remove the edges that we didn't

select, we'll get:

This is our minimum spanning tree (MST). So the cost of setting up the telephone connections is: 4 + 2 + 5 + 11 + 9
+ 2 + 1 = 34. And the set of houses and their connections are shown in the graph. There can be multiple MST of a
graph. It depends on the source node we choose.

The pseudo-code of the algorithm is given below:

Procedure PrimsMST(Graph): // here Graph is a non-empty connected weighted graph
Vnew[] = {x} // New subgraph Vnew with source node x

https://i.stack.imgur.com/uco0u.png
https://i.stack.imgur.com/WTz3O.png

Algorithms Notes for Professionals 83

Enew[] = {}
while Vnew is not equal to V
 u -> a node from Vnew
 v -> a node that is not in Vnew such that edge u-v has the minimum cost
 // if two nodes have same weight, pick any of them
 add v to Vnew
 add edge (u, v) to Enew
end while
Return Vnew and Enew

Complexity:

Time complexity of the above naive approach is O(V²). It uses adjacency matrix. We can reduce the complexity
using priority queue. When we add a new node to Vnew, we can add its adjacent edges in the priority queue. Then
pop the minimum weighted edge from it. Then the complexity will be: O(ElogE), where E is the number of edges.
Again a Binary Heap can be constructed to reduce the complexity to O(ElogV).

The pseudo-code using Priority Queue is given below:

Procedure MSTPrim(Graph, source):
for each u in V
 key[u] := inf
 parent[u] := NULL
end for
key[source] := 0
Q = Priority_Queue()
Q = V
while Q is not empty
 u -> Q.pop
 for each v adjacent to i
 if v belongs to Q and Edge(u,v) < key[v] // here Edge(u, v) represents
 // cost of edge(u, v)
 parent[v] := u
 key[v] := Edge(u, v)
 end if
 end for
end while

Here key[] stores the minimum cost of traversing node-v. parent[] is used to store the parent node. It is useful for
traversing and printing the tree.

Below is a simple program in Java:

import java.util.*;

public class Graph
{
 private static int infinite = 9999999;
 int[][] LinkCost;
 int NNodes;
 Graph(int[][] mat)
 {
 int i, j;
 NNodes = mat.length;
 LinkCost = new int[NNodes][NNodes];
 for (i=0; i < NNodes; i++)
 {
 for (j=0; j < NNodes; j++)
 {

Algorithms Notes for Professionals 84

 LinkCost[i][j] = mat[i][j];
 if (LinkCost[i][j] == 0)
 LinkCost[i][j] = infinite;
 }
 }
 for (i=0; i < NNodes; i++)
 {
 for (j=0; j < NNodes; j++)
 if (LinkCost[i][j] < infinite)
 System.out.print(" " + LinkCost[i][j] + " ");
 else
 System.out.print(" * ");
 System.out.println();
 }
 }
 public int unReached(boolean[] r)
 {
 boolean done = true;
 for (int i = 0; i < r.length; i++)
 if (r[i] == false)
 return i;
 return -1;
 }
 public void Prim()
 {
 int i, j, k, x, y;
 boolean[] Reached = new boolean[NNodes];
 int[] predNode = new int[NNodes];
 Reached[0] = true;
 for (k = 1; k < NNodes; k++)
 {
 Reached[k] = false;
 }
 predNode[0] = 0;
 printReachSet(Reached);
 for (k = 1; k < NNodes; k++)
 {
 x = y = 0;
 for (i = 0; i < NNodes; i++)
 for (j = 0; j < NNodes; j++)
 {
 if (Reached[i] && !Reached[j] &&
 LinkCost[i][j] < LinkCost[x][y])
 {
 x = i;
 y = j;
 }
 }
 System.out.println("Min cost edge: (" +
 + x + "," +
 + y + ")" +
 "cost = " + LinkCost[x][y]);
 predNode[y] = x;
 Reached[y] = true;
 printReachSet(Reached);
 System.out.println();
 }
 int[] a= predNode;
 for (i = 0; i < NNodes; i++)
 System.out.println(a[i] + " --> " + i);
 }
 void printReachSet(boolean[] Reached)

Algorithms Notes for Professionals 85

 {
 System.out.print("ReachSet = ");
 for (int i = 0; i < Reached.length; i++)
 if (Reached[i])
 System.out.print(i + " ");
 //System.out.println();
 }
 public static void main(String[] args)
 {
 int[][] conn = {{0,3,0,2,0,0,0,0,4}, // 0
 {3,0,0,0,0,0,0,4,0}, // 1
 {0,0,0,6,0,1,0,2,0}, // 2
 {2,0,6,0,1,0,0,0,0}, // 3
 {0,0,0,1,0,0,0,0,8}, // 4
 {0,0,1,0,0,0,8,0,0}, // 5
 {0,0,0,0,0,8,0,0,0}, // 6
 {0,4,2,0,0,0,0,0,0}, // 7
 {4,0,0,0,8,0,0,0,0} // 8
 };
 Graph G = new Graph(conn);
 G.Prim();
 }
}

Compile the above code using javac Graph.java

Output:

$ java Graph
 * 3 * 2 * * * * 4
 3 * * * * * * 4 *
 * * * 6 * 1 * 2 *
 2 * 6 * 1 * * * *
 * * * 1 * * * * 8
 * * 1 * * * 8 * *
 * * * * * 8 * * *
 * 4 2 * * * * * *
 4 * * * 8 * * * *
ReachSet = 0 Min cost edge: (0,3)cost = 2
ReachSet = 0 3
Min cost edge: (3,4)cost = 1
ReachSet = 0 3 4
Min cost edge: (0,1)cost = 3
ReachSet = 0 1 3 4
Min cost edge: (0,8)cost = 4
ReachSet = 0 1 3 4 8
Min cost edge: (1,7)cost = 4
ReachSet = 0 1 3 4 7 8
Min cost edge: (7,2)cost = 2
ReachSet = 0 1 2 3 4 7 8
Min cost edge: (2,5)cost = 1
ReachSet = 0 1 2 3 4 5 7 8
Min cost edge: (5,6)cost = 8
ReachSet = 0 1 2 3 4 5 6 7 8
0 --> 0
0 --> 1
7 --> 2
0 --> 3
3 --> 4
2 --> 5
5 --> 6

Algorithms Notes for Professionals 86

1 --> 7
0 --> 8

Algorithms Notes for Professionals 87

Chapter 13: Bellman–Ford Algorithm
Section 13.1: Single Source Shortest Path Algorithm (Given
there is a negative cycle in a graph)
Before reading this example, it is required to have a brief idea on edge-relaxation. You can learn it from here

Bellman-Ford Algorithm is computes the shortest paths from a single source vertex to all of the other vertices in a
weighted digraph. Even though it is slower than Dijkstra's Algorithm, it works in the cases when the weight of the
edge is negative and it also finds negative weight cycle in the graph. The problem with Dijkstra's Algorithm is, if
there's a negative cycle, you keep going through the cycle again and again and keep reducing the distance between
two vertices.

The idea of this algorithm is to go through all the edges of this graph one-by-one in some random order. It can be
any random order. But you must ensure, if u-v (where u and v are two vertices in a graph) is one of your orders,
then there must be an edge from u to v. Usually it is taken directly from the order of the input given. Again, any
random order will work.

After selecting the order, we will relax the edges according to the relaxation formula. For a given edge u-v going
from u to v the relaxation formula is:

if distance[u] + cost[u][v] < d[v]
 d[v] = d[u] + cost[u][v]

That is, if the distance from source to any vertex u + the weight of the edge u-v is less than the distance from
source to another vertex v, we update the distance from source to v. We need to relax the edges at most (V-1)
times where V is the number of edges in the graph. Why (V-1) you ask? We'll explain it in another example. Also we
are going to keep track of the parent vertex of any vertex, that is when we relax an edge, we will set:

parent[v] = u

It means we've found another shorter path to reach v via u. We will need this later to print the shortest path from
source to the destined vertex.

Let's look at an example. We have a graph:

https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm
https://i.stack.imgur.com/qIriI.png

Algorithms Notes for Professionals 88

We have selected 1 as the source vertex. We want to find out the shortest path from the source to all other
vertices.

At first, d[1] = 0 because it is the source. And rest are infinity, because we don't know their distance yet.

We will relax the edges in this sequence:

+--------+--------+--------+--------+--------+--------+--------+
| Serial | 1 | 2 | 3 | 4 | 5 | 6 |
+--------+--------+--------+--------+--------+--------+--------+
| Edge | 4->5 | 3->4 | 1->3 | 1->4 | 4->6 | 2->3 |
+--------+--------+--------+--------+--------+--------+--------+

You can take any sequence you want. If we relax the edges once, what do we get? We get the distance from source
to all other vertices of the path that uses at most 1 edge. Now let's relax the edges and update the values of d[]. We
get:

d[4] + cost[4][5] = infinity + 7 = infinity. We can't update this one.1.
d[2] + cost[3][4] = infinity. We can't update this one.2.
d[1] + cost[1][2] = 0 + 2 = 2 < d[2]. So d[2] = 2. Also parent[2] = 1.3.
d[1] + cost[1][4] = 4. So d[4] = 4 < d[4]. parent[4] = 1.4.
d[4] + cost[4][6] = 9. d[6] = 9 < d[6]. parent[6] = 4.5.
d[2] + cost[2][2] = infinity. We can't update this one.6.

We couldn't update some vertices, because the d[u] + cost[u][v] < d[v] condition didn't match. As we have said
before, we found the paths from source to other nodes using maximum 1 edge.

Our second iteration will provide us with the path using 2 nodes. We get:

d[4] + cost[4][5] = 12 < d[5]. d[5] = 12. parent[5] = 4.1.
d[3] + cost[3][4] = 1 < d[4]. d[4] = 1. parent[4] = 3.2.
d[3] remains unchanged.3.
d[4] remains unchanged.4.
d[4] + cost[4][6] = 6 < d[6]. d[6] = 6. parent[6] = 4.5.
d[3] remains unchanged.6.

https://i.stack.imgur.com/Pkhx2.png

Algorithms Notes for Professionals 89

Our graph will look like:

Our 3rd iteration will only update vertex 5, where d[5] will be 8. Our graph will look like:

After this no matter how many iterations we do, we'll have the same distances. So we will keep a flag that checks if
any update takes place or not. If it doesn't, we'll simply break the loop. Our pseudo-code will be:

Procedure Bellman-Ford(Graph, source):
n := number of vertices in Graph
for i from 1 to n
 d[i] := infinity
 parent[i] := NULL
end for
d[source] := 0
for i from 1 to n-1
 flag := false
 for all edges from (u,v) in Graph
 if d[u] + cost[u][v] < d[v]
 d[v] := d[u] + cost[u][v]
 parent[v] := u
 flag := true

https://i.stack.imgur.com/hX168.png
https://i.stack.imgur.com/CUtPh.png

Algorithms Notes for Professionals 90

 end if
 end for
 if flag == false
 break
end for
Return d

To keep track of negative cycle, we can modify our code using the procedure described here. Our completed
pseudo-code will be:

Procedure Bellman-Ford-With-Negative-Cycle-Detection(Graph, source):
n := number of vertices in Graph
for i from 1 to n
 d[i] := infinity
 parent[i] := NULL
end for
d[source] := 0
for i from 1 to n-1
 flag := false
 for all edges from (u,v) in Graph
 if d[u] + cost[u][v] < d[v]
 d[v] := d[u] + cost[u][v]
 parent[v] := u
 flag := true
 end if
 end for
 if flag == false
 break
end for
for all edges from (u,v) in Graph
 if d[u] + cost[u][v] < d[v]
 Return "Negative Cycle Detected"
 end if
end for
Return d

Printing Path:

To print the shortest path to a vertex, we'll iterate back to its parent until we find NULL and then print the vertices.
The pseudo-code will be:

Procedure PathPrinting(u)
v := parent[u]
if v == NULL
 return
PathPrinting(v)
print -> u

Complexity:

Since we need to relax the edges maximum (V-1) times, the time complexity of this algorithm will be equal to O(V *
E) where E denotes the number of edges, if we use adjacency list to represent the graph. However, if adjacency
matrix is used to represent the graph, time complexity will be O(V^3). Reason is we can iterate through all edges in
O(E) time when adjacency list is used, but it takes O(V^2) time when adjacency matrix is used.

Section 13.2: Detecting Negative Cycle in a Graph
To understand this example, it is recommended to have a brief idea about Bellman-Ford algorithm which can be found

Algorithms Notes for Professionals 91

here

Using Bellman-Ford algorithm, we can detect if there is a negative cycle in our graph. We know that, to find out the
shortest path, we need to relax all the edges of the graph (V-1) times, where V is the number of vertices in a graph.
We have already seen that in this example, after (V-1) iterations, we can't update d[], no matter how many
iterations we do. Or can we?

If there is a negative cycle in a graph, even after (V-1) iterations, we can update d[]. This happens because for every
iteration, traversing through the negative cycle always decreases the cost of the shortest path. This is why Bellman-
Ford algorithm limits the number of iterations to (V-1). If we used Dijkstra's Algorithm here, we'd be stuck in an
endless loop. However, let's concentrate on finding negative cycle.

Let's assume, we have a graph:

Let's pick vertex 1 as the source. After applying Bellman-Ford's single source shortest path algorithm to the graph,
we'll find out the distances from the source to all the other vertices.

This is how the graph looks like after (V-1) = 3 iterations. It should be the result since there are 4 edges, we need at
most 3 iterations to find out the shortest path. So either this is the answer, or there is a negative weight cycle in the
graph. To find that, after (V-1) iterations, we do one more final iteration and if the distance continues to decrease, it
means that there is definitely a negative weight cycle in the graph.

http://i.stack.imgur.com/AMKuZ.png
http://i.stack.imgur.com/2P5k7.png

Algorithms Notes for Professionals 92

For this example: if we check 2-3, d[2] + cost[2][3] will give us 1 which is less than d[3]. So we can conclude that
there is a negative cycle in our graph.

So how do we find out the negative cycle? We do a bit modification to Bellman-Ford procedure:

Procedure NegativeCycleDetector(Graph, source):
n := number of vertices in Graph
for i from 1 to n
 d[i] := infinity
end for
d[source] := 0
for i from 1 to n-1
 flag := false
 for all edges from (u,v) in Graph
 if d[u] + cost[u][v] < d[v]
 d[v] := d[u] + cost[u][v]
 flag := true
 end if
 end for
 if flag == false
 break
end for
for all edges from (u,v) in Graph
 if d[u] + cost[u][v] < d[v]
 Return "Negative Cycle Detected"
 end if
end for
Return "No Negative Cycle"

This is how we find out if there is a negative cycle in a graph. We can also modify Bellman-Ford Algorithm to keep
track of negative cycles.

Section 13.3: Why do we need to relax all the edges at most
(V-1) times
To understand this example, it is recommended to have a brief idea on Bellman-Ford single source shortest path algorithm
which can be found here

In Bellman-Ford algorithm, to find out the shortest path, we need to relax all the edges of the graph. This process is
repeated at most (V-1) times, where V is the number of vertices in the graph.

The number of iterations needed to find out the shortest path from source to all other vertices depends on the
order that we select to relax the edges.

Let's take a look at an example:

Here, the source vertex is 1. We will find out the shortest distance between the source and all the other vertices.
We can clearly see that, to reach vertex 4, in the worst case, it'll take (V-1) edges. Now depending on the order in
which the edges are discovered, it might take (V-1) times to discover vertex 4. Didn't get it? Let's use Bellman-Ford

http://i.stack.imgur.com/vunss.png

Algorithms Notes for Professionals 93

algorithm to find out the shortest path here:

We're going to use this sequence:

+--------+--------+--------+--------+
| Serial | 1 | 2 | 3 |
+--------+--------+--------+--------+
| Edge | 3->4 | 2->3 | 1->2 |
+--------+--------+--------+--------+

For our first iteration:

d[3] + cost[3][4] = infinity. It won't change anything.1.
d[2] + cost[2][3] = infinity. It won't change anything.2.
d[1] + cost[1][2] = 2 < d[2]. d[2] = 2. parent[2] = 1.3.

We can see that our relaxation process only changed d[2]. Our graph will look like:

Second iteration:

d[3] + cost[3][4] = infinity. It won't change anything.1.
d[2] + cost[2][3] = 5 < d[3]. d[3] = 5. parent[3] = 2.2.
It won't be changed.3.

This time the relaxation process changed d[3]. Our graph will look like:

Third iteration:

d[3] + cost[3][4] = 7 < d[4]. d[4] = 7. parent[4] = 3.1.
It won't be changed.2.
It won't be changed.3.

Our third iteration finally found out the shortest path to 4 from 1. Our graph will look like:

So, it took 3 iterations to find out the shortest path. After this one, no matter how many times we relax the edges,

http://i.stack.imgur.com/ePGvK.png
http://i.stack.imgur.com/jAH0f.png
http://i.stack.imgur.com/0CsqX.png

Algorithms Notes for Professionals 94

the values in d[] will remain the same. Now, if we considered another sequence:

+--------+--------+--------+--------+
| Serial | 1 | 2 | 3 |
+--------+--------+--------+--------+
| Edge | 1->2 | 2->3 | 3->4 |
+--------+--------+--------+--------+

We'd get:

d[1] + cost[1][2] = 2 < d[2]. d[2] = 2.1.
d[2] + cost[2][3] = 5 < d[3]. d[3] = 5.2.
d[3] + cost[3][4] = 7 < d[4]. d[4] = 5.3.

Our very first iteration has found the shortest path from source to all the other nodes. Another sequence 1->2,
3->4, 2->3 is possible, which will give us shortest path after 2 iterations. We can come to the decision that, no matter
how we arrange the sequence, it won't take more than 3 iterations to find out shortest path from the source in this
example.

We can conclude that, for the best case, it'll take 1 iteration to find out the shortest path from source. For the worst
case, it'll take (V-1) iterations, which is why we repeat the process of relaxation (V-1) times.

Algorithms Notes for Professionals 95

Chapter 14: Line Algorithm
Line drawing is accomplished by calculating intermediate positions along the line path between two specified
endpoint positions. An output device is then directed to fill in these positions between the endpoints.

Section 14.1: Bresenham Line Drawing Algorithm
Background Theory: Bresenham’s Line Drawing Algorithm is an efficient and accurate raster line generating
algorithm developed by Bresenham. It involves only integer calculation so it is accurate and fast. It can also be
extended to display circles another curves.

In Bresenham line drawing algorithm:

For Slope |m|<1:
Either value of x is increased
OR both x and y is increased using decision parameter.

For Slope |m|>1:
Either value of y is increased
OR both x and y is increased using decision parameter.

Algorithm for slope |m|<1:

Input two end points (x1,y1) and (x2,y2) of the line.1.

Plot the first point (x1,y1).2.

Calculate3.
Delx =| x2 – x1 |
Dely = | y2 – y1 |

Obtain the initial decision parameter as4.
P = 2 * dely – delx

For I = 0 to delx in step of 15.

If p < 0 then
X1 = x1 + 1
Pot(x1,y1)
P = p+ 2dely

Else
X1 = x1 + 1
Y1 = y1 + 1
Plot(x1,y1)
P = p + 2dely – 2 * delx

End if

End for

END6.

Source Code:

Algorithms Notes for Professionals 96

/* A C program to implement Bresenham line drawing algorithm for |m|<1 */
#include<stdio.h>
#include<conio.h>
#include<graphics.h>
#include<math.h>

int main()
{
 int gdriver=DETECT,gmode;
 int x1,y1,x2,y2,delx,dely,p,i;
 initgraph(&gdriver,&gmode,"c:\\TC\\BGI");

printf("Enter the intial points: ");
scanf("%d",&x1);
scanf("%d",&y1);
printf("Enter the end points: ");
scanf("%d",&x2);
scanf("%d",&y2);

putpixel(x1,y1,RED);

delx=fabs(x2-x1);
dely=fabs(y2-y1);
p=(2*dely)-delx;
for(i=0;i<delx;i++){
if(p<0)
{
 x1=x1+1;
 putpixel(x1,y1,RED);
 p=p+(2*dely);
}
else
{
 x1=x1+1;
 y1=y1+1;
 putpixel(x1,y1,RED);
 p=p+(2*dely)-(2*delx);
}
}
 getch();
 closegraph();
 return 0;
}

Algorithm for slope |m|>1:

Input two end points (x1,y1) and (x2,y2) of the line.1.
Plot the first point (x1,y1).2.
Calculate3.
Delx =| x2 – x1 |
Dely = | y2 – y1 |
Obtain the initial decision parameter as4.
P = 2 * delx – dely
For I = 0 to dely in step of 15.

If p < 0 then
y1 = y1 + 1
Pot(x1,y1)
P = p+ 2delx

Algorithms Notes for Professionals 97

Else
X1 = x1 + 1
Y1 = y1 + 1
Plot(x1,y1)
P = p + 2delx – 2 * dely

End if

End for

END6.

Source Code:

/* A C program to implement Bresenham line drawing algorithm for |m|>1 */
#include<stdio.h>
#include<conio.h>
#include<graphics.h>
#include<math.h>
int main()
{
int gdriver=DETECT,gmode;
int x1,y1,x2,y2,delx,dely,p,i;
initgraph(&gdriver,&gmode,"c:\\TC\\BGI");
printf("Enter the intial points: ");
scanf("%d",&x1);
scanf("%d",&y1);
printf("Enter the end points: ");
scanf("%d",&x2);
scanf("%d",&y2);
putpixel(x1,y1,RED);
delx=fabs(x2-x1);
dely=fabs(y2-y1);
p=(2*delx)-dely;
for(i=0;i<delx;i++){
if(p<0)
{
y1=y1+1;
putpixel(x1,y1,RED);
p=p+(2*delx);
}
else
{
x1=x1+1;
y1=y1+1;
putpixel(x1,y1,RED);
p=p+(2*delx)-(2*dely);
}
}
getch();
closegraph();
 return 0;
}

Algorithms Notes for Professionals 98

Chapter 15: Floyd-Warshall Algorithm
Section 15.1: All Pair Shortest Path Algorithm
Floyd-Warshall's algorithm is for finding shortest paths in a weighted graph with positive or negative edge weights.
A single execution of the algorithm will find the lengths (summed weights) of the shortest paths between all pair of
vertices. With a little variation, it can print the shortest path and can detect negative cycles in a graph. Floyd-
Warshall is a Dynamic-Programming algorithm.

Let's look at an example. We're going to apply Floyd-Warshall's algorithm on this graph:

First thing we do is, we take two 2D matrices. These are adjacency matrices. The size of the matrices is going to be
the total number of vertices. For our graph, we will take 4 * 4 matrices. The Distance Matrix is going to store the
minimum distance found so far between two vertices. At first, for the edges, if there is an edge between u-v and the
distance/weight is w, we'll store: distance[u][v] = w. For all the edges that doesn't exist, we're gonna put infinity.
The Path Matrix is for regenerating minimum distance path between two vertices. So initially, if there is a path
between u and v, we're going to put path[u][v] = u. This means the best way to come to vertex-v from vertex-u
is to use the edge that connects v with u. If there is no path between two vertices, we're going to put N there
indicating there is no path available now. The two tables for our graph will look like:

+-----+-----+-----+-----+-----+ +-----+-----+-----+-----+-----+
| | 1 | 2 | 3 | 4 | | | 1 | 2 | 3 | 4 |
+-----+-----+-----+-----+-----+ +-----+-----+-----+-----+-----+
| 1 | 0 | 3 | 6 | 15 | | 1 | N | 1 | 1 | 1 |
+-----+-----+-----+-----+-----+ +-----+-----+-----+-----+-----+
| 2 | inf | 0 | -2 | inf | | 2 | N | N | 2 | N |
+-----+-----+-----+-----+-----+ +-----+-----+-----+-----+-----+
| 3 | inf | inf | 0 | 2 | | 3 | N | N | N | 3 |
+-----+-----+-----+-----+-----+ +-----+-----+-----+-----+-----+
| 4 | 1 | inf | inf | 0 | | 4 | 4 | N | N | N |
+-----+-----+-----+-----+-----+ +-----+-----+-----+-----+-----+
 distance path

Since there is no loop, the diagonals are set N. And the distance from the vertex itself is 0.

To apply Floyd-Warshall algorithm, we're going to select a middle vertex k. Then for each vertex i, we're going to
check if we can go from i to k and then k to j, where j is another vertex and minimize the cost of going from i to j. If
the current distance[i][j] is greater than distance[i][k] + distance[k][j], we're going to put distance[i][j] equals to
the summation of those two distances. And the path[i][j] will be set to path[k][j], as it is better to go from i to k,

https://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm
http://i.stack.imgur.com/heaAS.png

Algorithms Notes for Professionals 99

and then k to j. All the vertices will be selected as k. We'll have 3 nested loops: for k going from 1 to 4, i going from
1 to 4 and j going from 1 to 4. We're going check:

if distance[i][j] > distance[i][k] + distance[k][j]
 distance[i][j] := distance[i][k] + distance[k][j]
 path[i][j] := path[k][j]
end if

So what we're basically checking is, for every pair of vertices, do we get a shorter distance by going through another
vertex? The total number of operations for our graph will be 4 * 4 * 4 = 64. That means we're going to do this check
64 times. Let's look at a few of them:

When k = 1, i = 2 and j = 3, distance[i][j] is -2, which is not greater than distance[i][k] + distance[k][j] = -2 + 0 = -2.
So it will remain unchanged. Again, when k = 1, i = 4 and j = 2, distance[i][j] = infinity, which is greater than
distance[i][k] + distance[k][j] = 1 + 3 = 4. So we put distance[i][j] = 4, and we put path[i][j] = path[k][j] = 1. What
this means is, to go from vertex-4 to vertex-2, the path 4->1->2 is shorter than the existing path. This is how we
populate both matrices. The calculation for each step is shown here. After making necessary changes, our matrices
will look like:

+-----+-----+-----+-----+-----+ +-----+-----+-----+-----+-----+
| | 1 | 2 | 3 | 4 | | | 1 | 2 | 3 | 4 |
+-----+-----+-----+-----+-----+ +-----+-----+-----+-----+-----+
| 1 | 0 | 3 | 1 | 3 | | 1 | N | 1 | 2 | 3 |
+-----+-----+-----+-----+-----+ +-----+-----+-----+-----+-----+
| 2 | 1 | 0 | -2 | 0 | | 2 | 4 | N | 2 | 3 |
+-----+-----+-----+-----+-----+ +-----+-----+-----+-----+-----+
| 3 | 3 | 6 | 0 | 2 | | 3 | 4 | 1 | N | 3 |
+-----+-----+-----+-----+-----+ +-----+-----+-----+-----+-----+
| 4 | 1 | 4 | 2 | 0 | | 4 | 4 | 1 | 2 | N |
+-----+-----+-----+-----+-----+ +-----+-----+-----+-----+-----+
 distance path

This is our shortest distance matrix. For example, the shortest distance from 1 to 4 is 3 and the shortest distance
between 4 to 3 is 2. Our pseudo-code will be:

Procedure Floyd-Warshall(Graph):
for k from 1 to V // V denotes the number of vertex
 for i from 1 to V
 for j from 1 to V
 if distance[i][j] > distance[i][k] + distance[k][j]
 distance[i][j] := distance[i][k] + distance[k][j]
 path[i][j] := path[k][j]
 end if
 end for
 end for
end for

Printing the path:

To print the path, we'll check the Path matrix. To print the path from u to v, we'll start from path[u][v]. We'll set
keep changing v = path[u][v] until we find path[u][v] = u and push every values of path[u][v] in a stack. After
finding u, we'll print u and start popping items from the stack and print them. This works because the path matrix
stores the value of the vertex which shares the shortest path to v from any other node. The pseudo-code will be:

Procedure PrintPath(source, destination):

http://imgur.com/a/NU6Hg

Algorithms Notes for Professionals 100

s = Stack()
S.push(destination)
while Path[source][destination] is not equal to source
 S.push(Path[source][destination])
 destination := Path[source][destination]
end while
print -> source
while S is not empty
 print -> S.pop
end while

Finding Negative Edge Cycle:

To find out if there is a negative edge cycle, we'll need to check the main diagonal of distance matrix. If any value
on the diagonal is negative, that means there is a negative cycle in the graph.

Complexity:

The complexity of Floyd-Warshall algorithm is O(V³) and the space complexity is: O(V²).

Algorithms Notes for Professionals 101

Chapter 16: Catalan Number Algorithm
Section 16.1: Catalan Number Algorithm Basic Information
Catalan numbers algorithm is Dynamic Programming algorithm.

In combinatorial mathematics, the Catalan numbers form a sequence of natural numbers that occur in various
counting problems, often involving recursively-defined objects. The Catalan numbers on nonnegative integers n are
a set of numbers that arise in tree enumeration problems of the type, 'In how many ways can a regular n-gon be
divided into n-2 triangles if different orientations are counted separately?'

Application of Catalan Number Algorithm:

The number of ways to stack coins on a bottom row that consists of n consecutive coins in a plane, such that1.
no coins are allowed to be put on the two sides of the bottom coins and every additional coin must be above
two other coins, is the nth Catalan number.
The number of ways to group a string of n pairs of parentheses, such that each open parenthesis has a2.
matching closed parenthesis, is the nth Catalan number.
The number of ways to cut an n+2-sided convex polygon in a plane into triangles by connecting vertices with3.
straight, non-intersecting lines is the nth Catalan number. This is the application in which Euler was
interested.

Using zero-based numbering, the nth Catalan number is given directly in terms of binomial coefficients by the
following equation.

Example of Catalan Number:

Here value of n = 4.(Best Example - From Wikipedia)

Auxiliary Space: O(n)

https://en.wikipedia.org/wiki/Catalan_number
https://i.stack.imgur.com/UP8N4.png
https://i.stack.imgur.com/VBGLB.png

Algorithms Notes for Professionals 102

Time Complexity: O(n^2)

Algorithms Notes for Professionals 103

Chapter 17: polynomial-time bounded
algorithm for Minimum Vertex Cover
Variable Meaning
G Input connected un-directed graph
X Set of vertices
C Final set of vertices

This is a polynomial algorithm for getting the minimum vertex cover of connected undirected graph. The time
complexity of this algorithm is O(n2)

Section 17.1: Algorithm Pseudo Code
Algorithm PMinVertexCover (graph G)
Input connected graph G
Output Minimum Vertex Cover Set C
Set C <- new Set<Vertex>()

Set X <- new Set<Vertex>()

X <- G.getAllVerticiesArrangedDescendinglyByDegree()

for v in X do
 List<Vertex> adjacentVertices1 <- G.getAdjacent(v)

 if !C contains any of adjacentVertices1 then

 C.add(v)

for vertex in C do

 List<vertex> adjacentVertices2 <- G.adjacentVertecies(vertex)

 if C contains any of adjacentVertices2 then

 C.remove(vertex)

return C

C is the minimum vertex cover of graph G

we can use bucket sort for sorting the vertices according to its degree because the maximum value of
degrees is (n-1) where n is the number of vertices then the time complexity of the sorting will be O(n)

Algorithms Notes for Professionals 104

Chapter 18: Multithreaded Algorithms
Examples for some multithreaded algorithms.

Section 18.1: Square matrix multiplication multithread
multiply-square-matrix-parallel(A, B)
 n = A.lines
 C = Matrix(n,n) //create a new matrix n*n
 parallel for i = 1 to n
 parallel for j = 1 to n
 C[i][j] = 0
 pour k = 1 to n
 C[i][j] = C[i][j] + A[i][k]*B[k][j]
 return C

Section 18.2: Multiplication matrix vector multithread
matrix-vector(A,x)
 n = A.lines
 y = Vector(n) //create a new vector of length n
 parallel for i = 1 to n
 y[i] = 0
 parallel for i = 1 to n
 for j = 1 to n
 y[i] = y[i] + A[i][j]*x[j]
 return y

Section 18.3: merge-sort multithread
A is an array and p and q indexes of the array such as you gonna sort the sub-array A[p..r]. B is a sub-array which will
be populated by the sort.

A call to p-merge-sort(A,p,r,B,s) sorts elements from A[p..r] and put them in B[s..s+r-p].

p-merge-sort(A,p,r,B,s)
 n = r-p+1
 if n==1
 B[s] = A[p]
 else
 T = new Array(n) //create a new array T of size n
 q = floor((p+r)/2))
 q_prime = q-p+1
 spawn p-merge-sort(A,p,q,T,1)
 p-merge-sort(A,q+1,r,T,q_prime+1)
 sync
 p-merge(T,1,q_prime,q_prime+1,n,B,s)

Here is the auxiliary function that performs the merge in parallel.
p-merge assumes that the two sub-arrays to merge are in the same array but doesn't assume they are adjacent in
the array. That's why we need p1,r1,p2,r2.

p-merge(T,p1,r1,p2,r2,A,p3)
 n1 = r1-p1+1
 n2 = r2-p2+1
 if n1<n2 //check if n1>=n2

Algorithms Notes for Professionals 105

 permute p1 and p2
 permute r1 and r2
 permute n1 and n2
 if n1==0 //both empty?
 return
 else
 q1 = floor((p1+r1)/2)
 q2 = dichotomic-search(T[q1],T,p2,r2)
 q3 = p3 + (q1-p1) + (q2-p2)
 A[q3] = T[q1]
 spawn p-merge(T,p1,q1-1,p2,q2-1,A,p3)
 p-merge(T,q1+1,r1,q2,r2,A,q3+1)
 sync

And here is the auxiliary function dichotomic-search.

x is the key to look for in the sub-array T[p..r].

dichotomic-search(x,T,p,r)
 inf = p
 sup = max(p,r+1)
 while inf<sup
 half = floor((inf+sup)/2)
 if x<=T[half]
 sup = half
 else
 inf = half+1
 return sup

Algorithms Notes for Professionals 106

Chapter 19: Knuth Morris Pratt (KMP)
Algorithm
The KMP is a pattern matching algorithm which searches for occurrences of a "word" W within a main "text string" S
by employing the observation that when a mismatch occurs, we have the sufficient information to determine where
the next match could begin.We take advantage of this information to avoid matching the characters that we know
will anyway match.The worst case complexity for searching a pattern reduces to O(n).

Section 19.1: KMP-Example
Algorithm

This algorithm is a two step process.First we create a auxiliary array lps[] and then use this array for searching the
pattern.

Preprocessing :

We pre-process the pattern and create an auxiliary array lps[] which is used to skip characters while1.
matching.
Here lps[] indicates longest proper prefix which is also suffix.A proper prefix is prefix in which whole string is2.
not included.For example, prefixes of string ABC are “ ”, “A”, “AB” and “ABC”. Proper prefixes are “ ”, “A” and
“AB”. Suffixes of the string are “ ”, “C”, “BC” and “ABC”.

Searching

We keep matching characters txt[i] and pat[j] and keep incrementing i and j while pat[j] and txt[i] keep1.
matching.

When we see a mismatch,we know that characters pat[0..j-1] match with txt[i-j+1…i-1].We also know that2.
lps[j-1] is count of characters of pat[0…j-1] that are both proper prefix and suffix.From this we can conclude
that we do not need to match these lps[j-1] characters with txt[i-j…i-1] because we know that these
characters will match anyway.

Implementaion in Java

public class KMP {

 public static void main(String[] args) {
 // TODO Auto-generated method stub
 String str = "abcabdabc";
 String pattern = "abc";
 KMP obj = new KMP();
 System.out.println(obj.patternExistKMP(str.toCharArray(), pattern.toCharArray()));
 }

 public int[] computeLPS(char[] str){
 int lps[] = new int[str.length];

 lps[0] = 0;
 int j = 0;
 for(int i =1;i<str.length;i++){
 if(str[j] == str[i]){
 lps[i] = j+1;
 j++;

Algorithms Notes for Professionals 107

 i++;
 }else{
 if(j!=0){
 j = lps[j-1];
 }else{
 lps[i] = j+1;
 i++;
 }
 }

 }

 return lps;
 }

 public boolean patternExistKMP(char[] text,char[] pat){
 int[] lps = computeLPS(pat);
 int i=0,j=0;
 while(i<text.length && j<pat.length){
 if(text[i] == pat[j]){
 i++;
 j++;
 }else{
 if(j!=0){
 j = lps[j-1];
 }else{
 i++;
 }
 }
 }

 if(j==pat.length)
 return true;
 return false;
 }

}

Algorithms Notes for Professionals 108

Chapter 20: Edit Distance Dynamic
Algorithm
Section 20.1: Minimum Edits required to convert string 1 to
string 2
The problem statement is like if we are given two string str1 and str2 then how many minimum number of
operations can be performed on the str1 that it gets converted to str2.The Operations can be:

Insert1.
Remove2.
Replace3.

For Example

Input: str1 = "geek", str2 = "gesek"
Output: 1
We only need to insert s in first string

Input: str1 = "march", str2 = "cart"
Output: 3
We need to replace m with c and remove character c and then replace h with t

To solve this problem we will use a 2D array dp[n+1][m+1] where n is the length of the first string and m is the
length of the second string. For our example, if str1 is azcef and str2 is abcdef then our array will be dp[6][7]and
our final answer will be stored at dp[5][6].

 (a) (b) (c) (d) (e) (f)
 +---+---+---+---+---+---+---+
 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
 +---+---+---+---+---+---+---+
 (a)| 1 | | | | | | |
 +---+---+---+---+---+---+---+
 (z)| 2 | | | | | | |
 +---+---+---+---+---+---+---+
 (c)| 3 | | | | | | |
 +---+---+---+---+---+---+---+
 (e)| 4 | | | | | | |
 +---+---+---+---+---+---+---+
 (f)| 5 | | | | | | |
 +---+---+---+---+---+---+---+

For dp[1][1] we have to check what can we do to convert a into a.It will be 0.For dp[1][2] we have to check what can
we do to convert a into ab.It will be 1 because we have to insert b.So after 1st iteration our array will look like

 (a) (b) (c) (d) (e) (f)
 +---+---+---+---+---+---+---+
 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
 +---+---+---+---+---+---+---+
 (a)| 1 | 0 | 1 | 2 | 3 | 4 | 5 |
 +---+---+---+---+---+---+---+
 (z)| 2 | | | | | | |
 +---+---+---+---+---+---+---+
 (c)| 3 | | | | | | |

Algorithms Notes for Professionals 109

 +---+---+---+---+---+---+---+
 (e)| 4 | | | | | | |
 +---+---+---+---+---+---+---+
 (f)| 5 | | | | | | |
 +---+---+---+---+---+---+---+

For iteration 2

For dp[2][1] we have to check that to convert az to a we need to remove z, hence dp[2][1] will be 1.Similary for
dp[2][2] we need to replace z with b, hence dp[2][2] will be 1.So after 2nd iteration our dp[] array will look like.

 (a) (b) (c) (d) (e) (f)
 +---+---+---+---+---+---+---+
 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
 +---+---+---+---+---+---+---+
 (a)| 1 | 0 | 1 | 2 | 3 | 4 | 5 |
 +---+---+---+---+---+---+---+
 (z)| 2 | 1 | 1 | 2 | 3 | 4 | 5 |
 +---+---+---+---+---+---+---+
 (c)| 3 | | | | | | |
 +---+---+---+---+---+---+---+
 (e)| 4 | | | | | | |
 +---+---+---+---+---+---+---+
 (f)| 5 | | | | | | |
 +---+---+---+---+---+---+---+

So our formula will look like

if characters are same
 dp[i][j] = dp[i-1][j-1];
else
 dp[i][j] = 1 + Min(dp[i-1][j], dp[i][j-1], dp[i-1][j-1])

After last iteration our dp[] array will look like

 (a) (b) (c) (d) (e) (f)
 +---+---+---+---+---+---+---+
 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
 +---+---+---+---+---+---+---+
 (a)| 1 | 0 | 1 | 2 | 3 | 4 | 5 |
 +---+---+---+---+---+---+---+
 (z)| 2 | 1 | 1 | 2 | 3 | 4 | 5 |
 +---+---+---+---+---+---+---+
 (c)| 3 | 2 | 2 | 1 | 2 | 3 | 4 |
 +---+---+---+---+---+---+---+
 (e)| 4 | 3 | 3 | 2 | 2 | 2 | 3 |
 +---+---+---+---+---+---+---+
 (f)| 5 | 4 | 4 | 2 | 3 | 3 | 3 |
 +---+---+---+---+---+---+---+

Implementation in Java

public int getMinConversions(String str1, String str2){
 int dp[][] = new int[str1.length()+1][str2.length()+1];
 for(int i=0;i<=str1.length();i++){
 for(int j=0;j<=str2.length();j++){
 if(i==0)

Algorithms Notes for Professionals 110

 dp[i][j] = j;
 else if(j==0)
 dp[i][j] = i;
 else if(str1.charAt(i-1) == str2.charAt(j-1))
 dp[i][j] = dp[i-1][j-1];
 else{
 dp[i][j] = 1 + Math.min(dp[i-1][j], Math.min(dp[i][j-1], dp[i-1][j-1]));
 }
 }
 }
 return dp[str1.length()][str2.length()];
}

Time Complexity

O(n^2)

Algorithms Notes for Professionals 111

Chapter 21: Online algorithms
Section 21.1: Paging (Online Caching)
Preface

Instead of starting with a formal definition, the goal is to approach these topic via a row of examples, introducing
definitions along the way. The remark section Theory will consist of all definitions, theorems and propositions to
give you all informations to faster look up specific aspects.

The remark section sources consists of the basis material used for this topic and additional information for further
reading. In addition you will find the full source codes for the examples there. Please pay attention that to make the
source code for the examples more readable and shorter it refrains from things like error handling etc. It also
passes on some specific language features which would obscure the clarity of the example like extensive use of
advanced libraries etc.

Paging

The paging problem arises from the limitation of finite space. Let's assume our cache C has k pages. Now we want
to process a sequence of m page requests which must have been placed in the cache before they are processed. Of
course if m<=k then we just put all elements in the cache and it will work, but usually is m>>k.

We say a request is a cache hit, when the page is already in cache, otherwise, its called a cache miss. In that case,
we must bring the requested page into the cache and evict another, assuming the cache is full. The Goal is an
eviction schedule that minimizes the number of evictions.

There are numerous strategies for this problem, let's look at some:

First in, first out (FIFO): The oldest page gets evicted1.
Last in, first out (LIFO): The newest page gets evicted2.
Least recently used (LRU): Evict page whose most recent access was earliest3.
Least frequently used (LFU): Evict page that was least frequently requested4.
Longest forward distance (LFD): Evict page in the cache that is not requested until farthest in the future.5.
Flush when full (FWF): clear the cache complete as soon as a cache miss happened6.

There are two ways to approach this problem:

offline: the sequence of page requests is known ahead of time1.
online: the sequence of page requests is not known ahead of time2.

Offline Approach

For the first approach look at the topic Applications of Greedy technique. It's third Example Offline Caching
considers the first five strategies from above and gives you a good entry point for the following.

The example program was extended with the FWF strategy:

class FWF : public Strategy {
public:
 FWF() : Strategy("FWF")
 {
 }

 int apply(int requestIndex) override

Algorithms Notes for Professionals 112

 {
 for(int i=0; i<cacheSize; ++i)
 {
 if(cache[i] == request[requestIndex])
 return i;

 // after first empty page all others have to be empty
 else if(cache[i] == emptyPage)
 return i;
 }

 // no free pages
 return 0;
 }

 void update(int cachePos, int requestIndex, bool cacheMiss) override
 {

 // no pages free -> miss -> clear cache
 if(cacheMiss && cachePos == 0)
 {
 for(int i = 1; i < cacheSize; ++i)
 cache[i] = emptyPage;
 }
 }
};

The full sourcecode is available here. If we reuse the example from the topic, we get the following output:

Strategy: FWF

Cache initial: (a,b,c)

Request cache 0 cache 1 cache 2 cache miss
 a a b c
 a a b c
 d d X X x
 e d e X
 b d e b
 b d e b
 a a X X x
 c a c X
 f a c f
 d d X X x
 e d e X
 a d e a
 f f X X x
 b f b X
 e f b e
 c c X X x

Total cache misses: 5

Even though LFD is optimal, FWF has fewer cache misses. But the main goal was to minimize the number of
evictions and for FWF five misses mean 15 evictions, which makes it the poorest choice for this example.

Online Approach

Now we want to approach the online problem of paging. But first we need an understanding how to do it.
Obviously an online algorithm cannot be better than the optimal offline algorithm. But how much worse it is? We

http://pastebin.com/AF7EC2xJ

Algorithms Notes for Professionals 113

need formal definitions to answer that question:

Definition 1.1: An optimization problem ? consists of a set of instances ??. For every instance ???? there is a set ??
of solutions and a objective function f? : ?? ? ??0 which assigns apositive real value to every solution.
We say OPT(?) is the value of an optimal solution, A(?) is the solution of an Algorithm A for the problem ? and
wA(?)=f?(A(?)) its value.

Definition 1.2: An online algorithm A for a minimization problem ? has a competetive ratio of r ? 1 if there is a
constant ??? with

wA(?) = f?(A(?)) ? r ? OPT(?) + ?

for all instances ????. A is called a r-competitive online algorithm. Is even

wA(?) ? r ? OPT(?)

for all instances ???? then A is called a strictly r-competitive online algorithm.

So the question is how competitive is our online algorithm compared to an optimal offline algorithm. In their
famous book Allan Borodin and Ran El-Yaniv used another scenario to describe the online paging situation:

There is an evil adversary who knows your algorithm and the optimal offline algorithm. In every step, he tries to
request a page which is worst for you and simultaneously best for the offline algorithm. the competitive factor of
your algorithm is the factor on how badly your algorithm did against the adversary's optimal offline algorithm. If
you want to try to be the adversary, you can try the Adversary Game (try to beat the paging strategies).

Marking Algorithms

Instead of analysing every algorithm separately, let's look at a special online algorithm family for the paging
problem called marking algorithms.

Let ?=(?1,...,?p) an instance for our problem and k our cache size, than ? can be divided into phases:

Phase 1 is the maximal subsequence of ? from the start till maximal k different pages are requested
Phase i ? 2 is the maximal subsequence of ? from the end of pase i-1 till maximal k different pages are
requested

For example with k = 3:

A marking algorithm (implicitly or explicitly) maintains whether a page is marked or not. At the beginning of each
phase are all pages unmarked. Is a page requested during a phase it gets marked. An algorithm is a marking
algorithm iff it never evicts a marked page from cache. That means pages which are used during a phase will not be
evicted.

http://www.cs.technion.ac.il/%7Erani/book.html
https://pastebin.com/u/kgoedde/1/Wak9refA
https://i.stack.imgur.com/u4VjA.png

Algorithms Notes for Professionals 114

Proposition 1.3: LRU and FWF are marking algorithm.

Proof: At the beginning of each phase (except for the first one) FWF has a cache miss and cleared the cache. that
means we have k empty pages. In every phase are maximal k different pages requested, so there will be now
eviction during the phase. So FWF is a marking algorithm.
Let's assume LRU is not a marking algorithm. Then there is an instance ? where LRU a marked page x in phase i
evicted. Let ?t the request in phase i where x is evicted. Since x is marked there has to be a earlier request ?t* for x
in the same phase, so t* < t. After t* x is the caches newest page, so to got evicted at t the sequence ?t*+1,...,?t has
to request at least k from x different pages. That implies the phase i has requested at least k+1 different pages
which is a contradictory to the phase definition. So LRU has to be a marking algorithm.

Proposition 1.4: Every marking algorithm is strictly k-competitive.

Proof: Let ? be an instance for the paging problem and l the number of phases for ?. Is l = 1 then is every marking
algorithm optimal and the optimal offline algorithm cannot be better.
We assume l ? 2. the cost of every marking algorithm, for instance, ? is bounded from above with l ? k because in
every phase a marking algorithm cannot evict more than k pages without evicting one marked page.
Now we try to show that the optimal offline algorithm evicts at least k+l-2 pages for ?, k in the first phase and at
least one for every following phase except for the last one. For proof lets define l-2 disjunct subsequences of ?.
Subsequence i ? {1,...,l-2} starts at the second position of phase i+1 and end with the first position of phase i+2.
Let x be the first page of phase i+1. At the beginning of subsequence i there is page x and at most k-1 different
pages in the optimal offline algorithms cache. In subsequence i are k page request different from x, so the optimal
offline algorithm has to evict at least one page for every subsequence. Since at phase 1 beginning the cache is still
empty, the optimal offline algorithm causes k evictions during the first phase. That shows that

wA(?) ? l?k ? (k+l-2)k ? OPT(?) ? k

Corollary 1.5: LRU and FWF are strictly k-competitive.

Excercise: Show that FIFO is no marking algorithm, but strictly k-competitive.

Is there no constant r for which an online algorithm A is r-competitive, we call A not competitive

Proposition 1.6: LFU and LIFO are not competitive.

Proof: Let l ? 2 a constant, k ? 2 the cache size. The different cache pages are nubered 1,...,k+1. We look at the
following sequence:

The first page 1 is requested l times than page 2 and so one. At the end, there are (l-1) alternating requests for page
k and k+1.
LFU and LIFO fill their cache with pages 1-k. When page k+1 is requested page k is evicted and vice versa. That
means every request of subsequence (k,k+1)l-1 evicts one page. In addition, their are k-1 cache misses for the first
time use of pages 1-(k-1). So LFU and LIFO evict exact k-1+2(l-1) pages.
Now we must show that for every constant ??? and every constant r ? 1 there exists an l so that

https://i.stack.imgur.com/zS05d.png
https://i.stack.imgur.com/lUOxY.png

Algorithms Notes for Professionals 115

which is equal to

To satisfy this inequality you just have to choose l sufficient big. So LFU and LIFO are not competitive.

Proposition 1.7: There is no r-competetive deterministic online algorithm for paging with r < k.

The proof for this last proposition is rather long and based of the statement that LFD is an optimal offline
algorithm. The interested reader can look it up in the book of Borodin and El-Yaniv (see sources below).

The Question is whether we could do better. For that, we have to leave the deterministic approach behind us and
start to randomize our algorithm. Clearly, its much harder for the adversary to punish your algorithm if it's
randomized.

Randomized paging will be discussed in one of next examples...

https://i.stack.imgur.com/arDFI.png

Algorithms Notes for Professionals 116

Chapter 22: Big-O Notation
Section 22.1: A Simple Loop
The following function finds the maximal element in an array:

int find_max(const int *array, size_t len) {
 int max = INT_MIN;
 for (size_t i = 0; i < len; i++) {
 if (max < array[i]) {
 max = array[i];
 }
 }
 return max;
}

The input size is the size of the array, which I called len in the code.

Let's count the operations.

int max = INT_MIN;
size_t i = 0;

These two assignments are done only once, so that's 2 operations. The operations that are looped are:

if (max < array[i])
i++;
max = array[i]

Since there are 3 operations in the loop, and the loop is done n times, we add 3n to our already existing 2
operations to get 3n + 2. So our function takes 3n + 2 operations to find the max (its complexity is 3n + 2). This is
a polynomial where the fastest growing term is a factor of n, so it is O(n).

You probably have noticed that "operation" is not very well defined. For instance I said that if (max < array[i])
was one operation, but depending on the architecture this statement can compile to for instance three instructions
: one memory read, one comparison and one branch. I have also considered all operations as the same, even
though for instance the memory operations will be slower than the others, and their performance will vary wildly
due for instance to cache effects. I also have completely ignored the return statement, the fact that a frame will be
created for the function, etc. In the end it doesn't matter to complexity analysis, because whatever way I choose to
count operations, it will only change the coefficient of the n factor and the constant, so the result will still be O(n).
Complexity shows how the algorithm scales with the size of the input, but it isn't the only aspect of performance!

Section 22.2: A Nested Loop
The following function checks if an array has any duplicates by taking each element, then iterating over the whole
array to see if the element is there

_Bool contains_duplicates(const int *array, size_t len) {
 for (int i = 0; i < len - 1; i++) {
 for (int j = 0; j < len; j++) {
 if (i != j && array[i] == array[j]) {
 return 1;
 }
 }
 }

Algorithms Notes for Professionals 117

 return 0;
}

The inner loop performs at each iteration a number of operations that is constant with n. The outer loop also does
a few constant operations, and runs the inner loop n times. The outer loop itself is run n times. So the operations
inside the inner loop are run n^2 times, the operations in the outer loop are run n times, and the assignment to i is
done one time. Thus, the complexity will be something like an^2 + bn + c, and since the highest term is n^2, the O
notation is O(n^2).

As you may have noticed, we can improve the algorithm by avoiding doing the same comparisons multiple times.
We can start from i + 1 in the inner loop, because all elements before it will already have been checked against all
array elements, including the one at index i + 1. This allows us to drop the i == j check.

_Bool faster_contains_duplicates(const int *array, size_t len) {
 for (int i = 0; i < len - 1; i++) {
 for (int j = i + 1; j < len; j++) {
 if (array[i] == array[j]) {
 return 1;
 }
 }
 }
 return 0;
}

Obviously, this second version does less operations and so is more efficient. How does that translate to Big-O
notation? Well, now the inner loop body is run 1 + 2 + ... + n - 1 = n(n-1)/2 times. This is still a polynomial of
the second degree, and so is still only O(n^2). We have clearly lowered the complexity, since we roughly divided by
2 the number of operations that we are doing, but we are still in the same complexity class as defined by Big-O. In
order to lower the complexity to a lower class we would need to divide the number of operations by something that
tends to infinity with n.

Section 22.3: O(log n) types of Algorithms
Let's say we have a problem of size n. Now for each step of our algorithm(which we need write), our original
problem becomes half of its previous size(n/2).

So at each step, our problem becomes half.

Step Problem
1 n/2
2 n/4
3 n/8
4 n/16

When the problem space is reduced(i.e solved completely), it cannot be reduced any further(n becomes equal to 1)
after exiting check condition.

Let's say at kth step or number of operations:1.

problem-size = 1

But we know at kth step, our problem-size should be:2.

problem-size = n/2k

Algorithms Notes for Professionals 118

From 1 and 2:3.

n/2k = 1 or

n = 2k

Take log on both sides4.

loge n = k loge2

or

k = loge n / loge 2

Using formula logx m / logx n = logn m5.

k = log2 n

or simply k = log n

Now we know that our algorithm can run maximum up to log n, hence time complexity comes as
O(log n)

A very simple example in code to support above text is :

for(int i=1; i<=n; i=i*2)
{
 // perform some operation
}

So now if some one asks you if n is 256 how many steps that loop(or any other algorithm that cuts down it's
problem size into half) will run you can very easily calculate.

k = log2 256

k = log2 2 8 (=> logaa = 1)

k = 8

Another very good example for similar case is Binary Search Algorithm.

int bSearch(int arr[],int size,int item){
 int low=0;
 int high=size-1;

 while(low<=high){
 mid=low+(high-low)/2;
 if(arr[mid]==item)
 return mid;
 else if(arr[mid]<item)
 low=mid+1;
 else high=mid-1;

Algorithms Notes for Professionals 119

 }
 return –1;// Unsuccessful result
}

Section 22.4: An O(log n) example
Introduction

Consider the following problem:

L is a sorted list containing n signed integers (n being big enough), for example [-5, -2, -1, 0, 1, 2, 4] (here, n
has a value of 7). If L is known to contain the integer 0, how can you find the index of 0 ?

Naïve approach

The first thing that comes to mind is to just read every index until 0 is found. In the worst case, the number of
operations is n, so the complexity is O(n).

This works fine for small values of n, but is there a more efficient way ?

Dichotomy

Consider the following algorithm (Python3):

a = 0
b = n-1
while True:
 h = (a+b)//2 ## // is the integer division, so h is an integer
 if L[h] == 0:
 return h
 elif L[h] > 0:
 b = h
 elif L[h] < 0:
 a = h

a and b are the indexes between which 0 is to be found. Each time we enter the loop, we use an index between a
and b and use it to narrow the area to be searched.

In the worst case, we have to wait until a and b are equal. But how many operations does that take? Not n, because
each time we enter the loop, we divide the distance between a and b by about two. Rather, the complexity is O(log
n).

Explanation

Note: When we write "log", we mean the binary logarithm, or log base 2 (which we will write "log_2"). As O(log_2 n) = O(log
n) (you can do the math) we will use "log" instead of "log_2".

Let's call x the number of operations: we know that 1 = n / (2^x).

So 2^x = n, then x = log n

Conclusion

When faced with successive divisions (be it by two or by any number), remember that the complexity is logarithmic.

Algorithms Notes for Professionals 120

Chapter 23: Sorting
Parameter Description

Stability A sorting algorithm is stable if it preserves the relative order of equal elements after
sorting.

In place A sorting algorithm is in-place if it sorts using only O(1) auxiliary memory (not counting
the array that needs to be sorted).

Best case complexity A sorting algorithm has a best case time complexity of O(T(n)) if its running time is at
least T(n) for all possible inputs.

Average case complexity A sorting algorithm has an average case time complexity of O(T(n)) if its running time,
averaged over all possible inputs, is T(n).

Worst case complexity A sorting algorithm has a worst case time complexity of O(T(n)) if its running time is at
most T(n).

Section 23.1: Stability in Sorting
Stability in sorting means whether a sort algorithm maintains the relative order of the equals keys of the original
input in the result output.

So a sorting algorithm is said to be stable if two objects with equal keys appear in the same order in sorted output
as they appear in the input unsorted array.

Consider a list of pairs:

(1, 2) (9, 7) (3, 4) (8, 6) (9, 3)

Now we will sort the list using the first element of each pair.

A stable sorting of this list will output the below list:

(1, 2) (3, 4) (8, 6) (9, 7) (9, 3)

Because (9, 3) appears after (9, 7) in the original list as well.

An unstable sorting will output the below list:

(1, 2) (3, 4) (8, 6) (9, 3) (9, 7)

Unstable sort may generate the same output as the stable sort but not always.

Well-known stable sorts:

Merge sort
Insertion sort
Radix sort
Tim sort
Bubble Sort

Well-known unstable sorts:

Heap sort
Quick sort

Algorithms Notes for Professionals 121

Chapter 24: Bubble Sort
Parameter Description

Stable Yes
In place Yes
Best case complexity O(n)
Average case complexity O(n^2)
Worst case complexity O(n^2)
Space complexity O(1)

Section 24.1: Bubble Sort
The BubbleSort compares each successive pair of elements in an unordered list and inverts the elements if they
are not in order.

The following example illustrates the bubble sort on the list {6,5,3,1,8,7,2,4} (pairs that were compared in each
step are encapsulated in '**'):

{6,5,3,1,8,7,2,4}
{**5,6**,3,1,8,7,2,4} -- 5 < 6 -> swap
{5,**3,6**,1,8,7,2,4} -- 3 < 6 -> swap
{5,3,**1,6**,8,7,2,4} -- 1 < 6 -> swap
{5,3,1,**6,8**,7,2,4} -- 8 > 6 -> no swap
{5,3,1,6,**7,8**,2,4} -- 7 < 8 -> swap
{5,3,1,6,7,**2,8**,4} -- 2 < 8 -> swap
{5,3,1,6,7,2,**4,8**} -- 4 < 8 -> swap

After one iteration through the list, we have {5,3,1,6,7,2,4,8}. Note that the greatest unsorted value in the array
(8 in this case) will always reach its final position. Thus, to be sure the list is sorted we must iterate n-1 times for lists
of length n.

Graphic:

Section 24.2: Implementation in C & C++
An example implementation of BubbleSort in C++:

 void bubbleSort(vector<int>numbers)
 {
 for(int i = numbers.size() - 1; i >= 0; i--) {
 for(int j = 1; j <= i; j++) {
 if(numbers[j-1] > numbers[j]) {
 swap(numbers[j-1],numbers(j));
 }
 }

http://i.stack.imgur.com/NJPXP.gif

Algorithms Notes for Professionals 122

 }
 }

C Implementation

void bubble_sort(long list[], long n)
{
 long c, d, t;

 for (c = 0 ; c < (n - 1); c++)
 {
 for (d = 0 ; d < n - c - 1; d++)
 {
 if (list[d] > list[d+1])
 {
 /* Swapping */

 t = list[d];
 list[d] = list[d+1];
 list[d+1] = t;
 }
 }
 }
}

Bubble Sort with pointer

void pointer_bubble_sort(long * list, long n)
{
 long c, d, t;

 for (c = 0 ; c < (n - 1); c++)
 {
 for (d = 0 ; d < n - c - 1; d++)
 {
 if (* (list + d) > *(list+d+1))
 {
 /* Swapping */

 t = * (list + d);
 * (list + d) = * (list + d + 1);
 * (list + d + 1) = t;
 }
 }
 }
}

Section 24.3: Implementation in C#
Bubble sort is also known as Sinking Sort. It is a simple sorting algorithm that repeatedly steps through the list to
be sorted, compares each pair of adjacent items and swaps them if they are in the wrong order.

Bubble sort example

Algorithms Notes for Professionals 123

Implementation of Bubble Sort
I used C# language to implement bubble sort algorithm

public class BubbleSort
{
 public static void SortBubble(int[] input)
 {
 for (var i = input.Length - 1; i >= 0; i--)
 {
 for (var j = input.Length - 1 - 1; j >= 0; j--)
 {
 if (input[j] <= input[j + 1]) continue;
 var temp = input[j + 1];
 input[j + 1] = input[j];
 input[j] = temp;
 }
 }
 }

 public static int[] Main(int[] input)
 {
 SortBubble(input);
 return input;
 }
}

Section 24.4: Python Implementation
#!/usr/bin/python

input_list = [10,1,2,11]

for i in range(len(input_list)):
 for j in range(i):
 if int(input_list[j]) > int(input_list[j+1]):
 input_list[j],input_list[j+1] = input_list[j+1],input_list[j]

print input_list

http://i.stack.imgur.com/SDHQM.jpg

Algorithms Notes for Professionals 124

Section 24.5: Implementation in Java
public class MyBubbleSort {

 public static void bubble_srt(int array[]) {//main logic
 int n = array.length;
 int k;
 for (int m = n; m >= 0; m--) {
 for (int i = 0; i < n - 1; i++) {
 k = i + 1;
 if (array[i] > array[k]) {
 swapNumbers(i, k, array);
 }
 }
 printNumbers(array);
 }
 }

 private static void swapNumbers(int i, int j, int[] array) {

 int temp;
 temp = array[i];
 array[i] = array[j];
 array[j] = temp;
 }

 private static void printNumbers(int[] input) {

 for (int i = 0; i < input.length; i++) {
 System.out.print(input[i] + ", ");
 }
 System.out.println("\n");
 }

 public static void main(String[] args) {
 int[] input = { 4, 2, 9, 6, 23, 12, 34, 0, 1 };
 bubble_srt(input);

 }
}

Section 24.6: Implementation in Javascript
 function bubbleSort(a)
 {
 var swapped;
 do {
 swapped = false;
 for (var i=0; i < a.length-1; i++) {
 if (a[i] > a[i+1]) {
 var temp = a[i];
 a[i] = a[i+1];
 a[i+1] = temp;
 swapped = true;
 }
 }
 } while (swapped);
 }

 var a = [3, 203, 34, 746, 200, 984, 198, 764, 9];

Algorithms Notes for Professionals 125

 bubbleSort(a);
 console.log(a); //logs [3, 9, 34, 198, 200, 203, 746, 764, 984]

Algorithms Notes for Professionals 126

Chapter 25: Merge Sort
Section 25.1: Merge Sort Basics
Merge Sort is a divide-and-conquer algorithm. It divides the input list of length n in half successively until there are
n lists of size 1. Then, pairs of lists are merged together with the smaller first element among the pair of lists being
added in each step. Through successive merging and through comparison of first elements, the sorted list is built.

An example:

Time Complexity: T(n) = 2T(n/2) + ?(n)

The above recurrence can be solved either using Recurrence Tree method or Master method. It falls in case II of
Master Method and solution of the recurrence is ?(nLogn). Time complexity of Merge Sort is ?(nLogn) in all 3 cases
(worst, average and best) as merge sort always divides the array in two halves and take linear time to merge two
halves.

Auxiliary Space: O(n)

Algorithmic Paradigm: Divide and Conquer

http://i.stack.imgur.com/Bs29u.png

Algorithms Notes for Professionals 127

Sorting In Place: Not in a typical implementation

Stable: Yes

Section 25.2: Merge Sort Implementation in Go
package main

import "fmt"

func mergeSort(a []int) []int {
 if len(a) < 2 {
 return a
 }
 m := (len(a)) / 2

 f := mergeSort(a[:m])
 s := mergeSort(a[m:])

 return merge(f, s)
}

func merge(f []int, s []int) []int {
 var i, j int
 size := len(f) + len(s)

 a := make([]int, size, size)

 for z := 0; z < size; z++ {
 lenF := len(f)
 lenS := len(s)

 if i > lenF-1 && j <= lenS-1 {
 a[z] = s[j]
 j++
 } else if j > lenS-1 && i <= lenF-1 {
 a[z] = f[i]
 i++
 } else if f[i] < s[j] {
 a[z] = f[i]
 i++
 } else {
 a[z] = s[j]
 j++
 }
 }

 return a
}

func main() {
 a := []int{75, 12, 34, 45, 0, 123, 32, 56, 32, 99, 123, 11, 86, 33}
 fmt.Println(a)
 fmt.Println(mergeSort(a))
}

Section 25.3: Merge Sort Implementation in C & C#
C Merge Sort

Algorithms Notes for Professionals 128

int merge(int arr[],int l,int m,int h)
{
 int arr1[10],arr2[10]; // Two temporary arrays to
 hold the two arrays to be merged
 int n1,n2,i,j,k;
 n1=m-l+1;
 n2=h-m;

 for(i=0; i<n1; i++)
 arr1[i]=arr[l+i];
 for(j=0; j<n2; j++)
 arr2[j]=arr[m+j+1];

 arr1[i]=9999; // To mark the end of each temporary array
 arr2[j]=9999;

 i=0;
 j=0;
 for(k=l; k<=h; k++) { //process of combining two sorted arrays
 if(arr1[i]<=arr2[j])
 arr[k]=arr1[i++];
 else
 arr[k]=arr2[j++];
 }

 return 0;
}

int merge_sort(int arr[],int low,int high)
{
 int mid;
 if(low<high) {
 mid=(low+high)/2;
 // Divide and Conquer
 merge_sort(arr,low,mid);
 merge_sort(arr,mid+1,high);
 // Combine
 merge(arr,low,mid,high);
 }

 return 0;
}

C# Merge Sort

public class MergeSort
 {
 static void Merge(int[] input, int l, int m, int r)
 {
 int i, j;
 var n1 = m - l + 1;
 var n2 = r - m;

 var left = new int[n1];
 var right = new int[n2];

 for (i = 0; i < n1; i++)
 {
 left[i] = input[l + i];
 }

Algorithms Notes for Professionals 129

 for (j = 0; j < n2; j++)
 {
 right[j] = input[m + j + 1];
 }

 i = 0;
 j = 0;
 var k = l;

 while (i < n1 && j < n2)
 {
 if (left[i] <= right[j])
 {
 input[k] = left[i];
 i++;
 }
 else
 {
 input[k] = right[j];
 j++;
 }
 k++;
 }

 while (i < n1)
 {
 input[k] = left[i];
 i++;
 k++;
 }

 while (j < n2)
 {
 input[k] = right[j];
 j++;
 k++;
 }
 }

 static void SortMerge(int[] input, int l, int r)
 {
 if (l < r)
 {
 int m = l + (r - l) / 2;
 SortMerge(input, l, m);
 SortMerge(input, m + 1, r);
 Merge(input, l, m, r);
 }
 }

 public static int[] Main(int[] input)
 {
 SortMerge(input, 0, input.Length - 1);
 return input;
 }
 }

Section 25.4: Merge Sort Implementation in Java
Below there is the implementation in Java using a generics approach. It is the same algorithm, which is presented
above.

Algorithms Notes for Professionals 130

public interface InPlaceSort<T extends Comparable<T>> {
void sort(final T[] elements); }

public class MergeSort < T extends Comparable < T >> implements InPlaceSort < T > {

@Override
public void sort(T[] elements) {
 T[] arr = (T[]) new Comparable[elements.length];
 sort(elements, arr, 0, elements.length - 1);
}

// We check both our sides and then merge them
private void sort(T[] elements, T[] arr, int low, int high) {
 if (low >= high) return;
 int mid = low + (high - low) / 2;
 sort(elements, arr, low, mid);
 sort(elements, arr, mid + 1, high);
 merge(elements, arr, low, high, mid);
}

private void merge(T[] a, T[] b, int low, int high, int mid) {
 int i = low;
 int j = mid + 1;

 // We select the smallest element of the two. And then we put it into b
 for (int k = low; k <= high; k++) {

 if (i <= mid && j <= high) {
 if (a[i].compareTo(a[j]) >= 0) {
 b[k] = a[j++];
 } else {
 b[k] = a[i++];
 }
 } else if (j > high && i <= mid) {
 b[k] = a[i++];
 } else if (i > mid && j <= high) {
 b[k] = a[j++];
 }
 }

 for (int n = low; n <= high; n++) {
 a[n] = b[n];
 }}}

Section 25.5: Merge Sort Implementation in Python
def merge(X, Y):
 " merge two sorted lists "
 p1 = p2 = 0
 out = []
 while p1 < len(X) and p2 < len(Y):
 if X[p1] < Y[p2]:
 out.append(X[p1])
 p1 += 1
 else:
 out.append(Y[p2])
 p2 += 1
 out += X[p1:] + Y[p2:]

Algorithms Notes for Professionals 131

 return out

def mergeSort(A):
 if len(A) <= 1:
 return A
 if len(A) == 2:
 return sorted(A)

 mid = len(A) / 2
 return merge(mergeSort(A[:mid]), mergeSort(A[mid:]))

if __name__ == "__main__":
 # Generate 20 random numbers and sort them
 A = [randint(1, 100) for i in xrange(20)]
 print mergeSort(A)

Section 25.6: Bottoms-up Java Implementation
public class MergeSortBU {
 private static Integer[] array = { 4, 3, 1, 8, 9, 15, 20, 2, 5, 6, 30, 70,
60,80,0,9,67,54,51,52,24,54,7 };

 public MergeSortBU() {
 }

 private static void merge(Comparable[] arrayToSort, Comparable[] aux, int lo,int mid, int hi) {

 for (int index = 0; index < arrayToSort.length; index++) {
 aux[index] = arrayToSort[index];
 }

 int i = lo;
 int j = mid + 1;
 for (int k = lo; k <= hi; k++) {
 if (i > mid)
 arrayToSort[k] = aux[j++];
 else if (j > hi)
 arrayToSort[k] = aux[i++];
 else if (isLess(aux[i], aux[j])) {
 arrayToSort[k] = aux[i++];
 } else {
 arrayToSort[k] = aux[j++];
 }

 }
 }

 public static void sort(Comparable[] arrayToSort, Comparable[] aux, int lo, int hi) {
 int N = arrayToSort.length;
 for (int sz = 1; sz < N; sz = sz + sz) {
 for (int low = 0; low < N; low = low + sz + sz) {
 System.out.println("Size:"+ sz);
 merge(arrayToSort, aux, low, low + sz -1 ,Math.min(low + sz + sz - 1, N - 1));
 print(arrayToSort);
 }
 }

 }

 public static boolean isLess(Comparable a, Comparable b) {
 return a.compareTo(b) <= 0;

Algorithms Notes for Professionals 132

 }

 private static void print(Comparable[] array)
{http://stackoverflow.com/documentation/algorithm/5732/merge-sort#
 StringBuffer buffer = new
StringBuffer();http://stackoverflow.com/documentation/algorithm/5732/merge-sort#
 for (Comparable value : array) {
 buffer.append(value);
 buffer.append(' ');
 }
 System.out.println(buffer);
 }

 public static void main(String[] args) {
 Comparable[] aux = new Comparable[array.length];
 print(array);
 MergeSortBU.sort(array, aux, 0, array.length - 1);
 }
}

Algorithms Notes for Professionals 133

Chapter 26: Insertion Sort
Section 26.1: Haskell Implementation
insertSort :: Ord a => [a] -> [a]
insertSort [] = []
insertSort (x:xs) = insert x (insertSort xs)

insert :: Ord a => a-> [a] -> [a]
insert n [] = [n]
insert n (x:xs) | n <= x = (n:x:xs)
 | otherwise = x:insert n xs

Algorithms Notes for Professionals 134

Chapter 27: Bucket Sort
Section 27.1: C# Implementation
public class BucketSort
{
 public static void SortBucket(ref int[] input)
 {
 int minValue = input[0];
 int maxValue = input[0];
 int k = 0;

 for (int i = input.Length - 1; i >= 1; i--)
 {
 if (input[i] > maxValue) maxValue = input[i];
 if (input[i] < minValue) minValue = input[i];
 }

 List<int>[] bucket = new List<int>[maxValue - minValue + 1];

 for (int i = bucket.Length - 1; i >= 0; i--)
 {
 bucket[i] = new List<int>();
 }

 foreach (int i in input)
 {
 bucket[i - minValue].Add(i);
 }

 foreach (List<int> b in bucket)
 {
 if (b.Count > 0)
 {
 foreach (int t in b)
 {
 input[k] = t;
 k++;
 }
 }
 }
 }

 public static int[] Main(int[] input)
 {
 SortBucket(ref input);
 return input;
 }
}

Algorithms Notes for Professionals 135

Chapter 28: Quicksort
Section 28.1: Quicksort Basics
Quicksort is a sorting algorithm that picks an element ("the pivot") and reorders the array forming two partitions
such that all elements less than the pivot come before it and all elements greater come after. The algorithm is then
applied recursively to the partitions until the list is sorted.

1. Lomuto partition scheme mechanism :

This scheme chooses a pivot which is typically the last element in the array. The algorithm maintains the index to
put the pivot in variable i and each time it finds an element less than or equal to pivot, this index is incremented
and that element would be placed before the pivot.

partition(A, low, high) is
pivot := A[high]
i := low
for j := low to high – 1 do
 if A[j] ? pivot then
 swap A[i] with A[j]
 i := i + 1
swap A[i] with A[high]
return i

Quick Sort mechanism :

quicksort(A, low, high) is
if low < high then
 p := partition(A, low, high)
 quicksort(A, low, p – 1)
 quicksort(A, p + 1, high)

Example of quick sort:

https://en.wikipedia.org/wiki/Quicksort

Algorithms Notes for Professionals 136

2. Hoare partition scheme:

It uses two indices that start at the ends of the array being partitioned, then move toward each other, until they
detect an inversion: a pair of elements, one greater or equal than the pivot, one lesser or equal, that are in the
wrong order relative to each other. The inverted elements are then swapped. When the indices meet, the algorithm
stops and returns the final index. Hoare's scheme is more efficient than Lomuto's partition scheme because it does
three times fewer swaps on average, and it creates efficient partitions even when all values are equal.

quicksort(A, lo, hi) is
if lo < hi then
 p := partition(A, lo, hi)
 quicksort(A, lo, p)
 quicksort(A, p + 1, hi)

Partition :

partition(A, lo, hi) is
pivot := A[lo]
i := lo - 1
j := hi + 1
loop forever
 do:
 i := i + 1

https://i.stack.imgur.com/UWJZY.gif

Algorithms Notes for Professionals 137

 while A[i] < pivot do

 do:
 j := j - 1
 while A[j] > pivot do

 if i >= j then
 return j

 swap A[i] with A[j]

Section 28.2: Quicksort in Python
def quicksort(arr):
 if len(arr) <= 1:
 return arr
 pivot = arr[len(arr) / 2]
 left = [x for x in arr if x < pivot]
 middle = [x for x in arr if x == pivot]
 right = [x for x in arr if x > pivot]
 return quicksort(left) + middle + quicksort(right)

print quicksort([3,6,8,10,1,2,1])

Prints "[1, 1, 2, 3, 6, 8, 10]"

Section 28.3: Lomuto partition java implementation
public class Solution {

public static void main(String[] args) {
 Scanner sc = new Scanner(System.in);
 int n = sc.nextInt();
 int[] ar = new int[n];
 for(int i=0; i<n; i++)
 ar[i] = sc.nextInt();
 quickSort(ar, 0, ar.length-1);
}

public static void quickSort(int[] ar, int low, int high)
 {
 if(low<high)
 {
 int p = partition(ar, low, high);
 quickSort(ar, 0 , p-1);
 quickSort(ar, p+1, high);
 }
 }
public static int partition(int[] ar, int l, int r)
 {
 int pivot = ar[r];
 int i =l;
 for(int j=l; j<r; j++)
 {
 if(ar[j] <= pivot)
 {
 int t = ar[j];
 ar[j] = ar[i];
 ar[i] = t;
 i++;
 }

Algorithms Notes for Professionals 138

 }
 int t = ar[i];
 ar[i] = ar[r];
 ar[r] = t;

 return i;
}

Algorithms Notes for Professionals 139

Chapter 29: Counting Sort
Section 29.1: Counting Sort Basic Information
Counting sort is an integer sorting algorithm for a collection of objects that sorts according to the keys of the
objects.

Steps

Construct a working array C that has size equal to the range of the input array A.1.
Iterate through A, assigning C[x] based on the number of times x appeared in A.2.
Transform C into an array where C[x] refers to the number of values ? x by iterating through the array,3.
assigning to each C[x] the sum of its prior value and all values in C that come before it.
Iterate backwards through A, placing each value in to a new sorted array B at the index recorded in C. This is4.
done for a given A[x] by assigning B[C[A[x]]] to A[x], and decrementing C[A[x]] in case there were duplicate
values in the original unsorted array.

Example of Counting Sort

Auxiliary Space: O(n+k)
Time Complexity: Worst-case: O(n+k), Best-case: O(n), Average-case O(n+k)

Section 29.2: Psuedocode Implementation
Constraints:

Input (an array to be sorted)1.
Number of element in input (n)2.
Keys in the range of 0..k-1 (k)3.
Count (an array of number)4.

Pseudocode:

for x in input:
 count[key(x)] += 1
total = 0
for i in range(k):
 oldCount = count[i]
 count[i] = total
 total += oldCount

https://en.wikipedia.org/wiki/Counting_sort
http://i.stack.imgur.com/ccdTK.jpg

Algorithms Notes for Professionals 140

for x in input:
 output[count[key(x)]] = x
 count[key(x)] += 1
return output

Algorithms Notes for Professionals 141

Chapter 30: Heap Sort
Section 30.1: C# Implementation
public class HeapSort
{
 public static void Heapify(int[] input, int n, int i)
 {
 int largest = i;
 int l = i + 1;
 int r = i + 2;

 if (l < n && input[l] > input[largest])
 largest = l;

 if (r < n && input[r] > input[largest])
 largest = r;

 if (largest != i)
 {
 var temp = input[i];
 input[i] = input[largest];
 input[largest] = temp;
 Heapify(input, n, largest);
 }
 }

 public static void SortHeap(int[] input, int n)
 {
 for (var i = n - 1; i >= 0; i--)
 {
 Heapify(input, n, i);
 }
 for (int j = n - 1; j >= 0; j--)
 {
 var temp = input[0];
 input[0] = input[j];
 input[j] = temp;
 Heapify(input, j, 0);
 }
 }

 public static int[] Main(int[] input)
 {
 SortHeap(input, input.Length);
 return input;
 }
}

Section 30.2: Heap Sort Basic Information
Heap sort is a comparison based sorting technique on binary heap data structure. It is similar to selection sort in
which we first find the maximum element and put it at the end of the data structure. Then repeat the same process
for the remaining items.

Pseudo code for Heap Sort:

function heapsort(input, count)

https://en.wikipedia.org/wiki/Heapsort

Algorithms Notes for Professionals 142

 heapify(a,count)
 end <- count - 1
 while end -> 0 do
 swap(a[end],a[0])
 end<-end-1
 restore(a, 0, end)

function heapify(a, count)
 start <- parent(count - 1)
 while start >= 0 do
 restore(a, start, count - 1)
 start <- start - 1

Example of Heap Sort:

Auxiliary Space: O(1)
Time Complexity: O(nlogn)

http://i.stack.imgur.com/rxRGq.png

Algorithms Notes for Professionals 143

Chapter 31: Cycle Sort
Section 31.1: Pseudocode Implementation
(input)
output = 0
for cycleStart from 0 to length(array) - 2
 item = array[cycleStart]
 pos = cycleStart
 for i from cycleStart + 1 to length(array) - 1
 if array[i] < item:
 pos += 1
 if pos == cycleStart:
 continue
 while item == array[pos]:
 pos += 1
 array[pos], item = item, array[pos]
 writes += 1
 while pos != cycleStart:
 pos = cycleStart
 for i from cycleStart + 1 to length(array) - 1
 if array[i] < item:
 pos += 1
 while item == array[pos]:
 pos += 1
 array[pos], item = item, array[pos]
 writes += 1
return outout

Algorithms Notes for Professionals 144

Chapter 32: Odd-Even Sort
Section 32.1: Odd-Even Sort Basic Information
An Odd-Even Sort or brick sort is a simple sorting algorithm, which is developed for use on parallel processors with
local interconnection. It works by comparing all odd/even indexed pairs of adjacent elements in the list and, if a pair
is in the wrong order the elements are switched. The next step repeats this for even/odd indexed pairs. Then it
alternates between odd/even and even/odd steps until the list is sorted.

Pseudo code for Odd-Even Sort:

if n>2 then
 1. apply odd-even merge(n/2) recursively to the even subsequence a0, a2, ..., an-2 and to the
odd subsequence a1, a3, , ..., an-1
 2. comparison [i : i+1] for all i element {1, 3, 5, 7, ..., n-3}
else
 comparison [0 : 1]

Wikipedia has best illustration of Odd-Even sort:

Example of Odd-Even Sort:

https://en.wikipedia.org/wiki/Odd%E2%80%93even_sort
https://i.stack.imgur.com/FVktW.gif

Algorithms Notes for Professionals 145

Implementation:

I used C# language to implement Odd-Even Sort Algorithm.

public class OddEvenSort
{
 private static void SortOddEven(int[] input, int n)
 {
 var sort = false;

 while (!sort)
 {
 sort = true;
 for (var i = 1; i < n - 1; i += 2)
 {
 if (input[i] <= input[i + 1]) continue;
 var temp = input[i];
 input[i] = input[i + 1];
 input[i + 1] = temp;
 sort = false;
 }
 for (var i = 0; i < n - 1; i += 2)
 {
 if (input[i] <= input[i + 1]) continue;
 var temp = input[i];
 input[i] = input[i + 1];
 input[i + 1] = temp;
 sort = false;
 }

https://i.stack.imgur.com/LZJKu.jpg

Algorithms Notes for Professionals 146

 }
 }

 public static int[] Main(int[] input)
 {
 SortOddEven(input, input.Length);
 return input;
 }
}

Auxiliary Space: O(n)
Time Complexity: O(n)

Algorithms Notes for Professionals 147

Chapter 33: Selection Sort
Section 33.1: Elixir Implementation
defmodule Selection do

 def sort(list) when is_list(list) do
 do_selection(list, [])
 end

 def do_selection([head|[]], acc) do
 acc ++ [head]
 end

 def do_selection(list, acc) do
 min = min(list)
 do_selection(:lists.delete(min, list), acc ++ [min])
 end

 defp min([first|[second|[]]]) do
 smaller(first, second)
 end

 defp min([first|[second|tail]]) do
 min([smaller(first, second)|tail])
 end

 defp smaller(e1, e2) do
 if e1 <= e2 do
 e1
 else
 e2
 end
 end
end

Selection.sort([100,4,10,6,9,3])
|> IO.inspect

Section 33.2: Selection Sort Basic Information
Selection sort is a sorting algorithm, specifically an in-place comparison sort. It has O(n2) time complexity, making it
inefficient on large lists, and generally performs worse than the similar insertion sort. Selection sort is noted for its
simplicity, and it has performance advantages over more complicated algorithms in certain situations, particularly
where auxiliary memory is limited.

The algorithm divides the input list into two parts: the sublist of items already sorted, which is built up from left to
right at the front (left) of the list, and the sublist of items remaining to be sorted that occupy the rest of the list.
Initially, the sorted sublist is empty and the unsorted sublist is the entire input list. The algorithm proceeds by
finding the smallest (or largest, depending on sorting order) element in the unsorted sublist, exchanging (swapping)
it with the leftmost unsorted element (putting it in sorted order), and moving the sublist boundaries one element to
the right.

Pseudo code for Selection sort:

function select(list[1..n], k)
 for i from 1 to k

https://en.wikipedia.org/wiki/Selection_sort

Algorithms Notes for Professionals 148

 minIndex = i
 minValue = list[i]
 for j from i+1 to n
 if list[j] < minValue
 minIndex = j
 minValue = list[j]
 swap list[i] and list[minIndex]
 return list[k]

Visualization of selection sort:

Example of Selection sort:

https://i.stack.imgur.com/LZepY.gif

Algorithms Notes for Professionals 149

Auxiliary Space: O(n)
Time Complexity: O(n^2)

Section 33.3: Implementation of Selection sort in C#
I used C# language to implement Selection sort algorithm.

public class SelectionSort
{
 private static void SortSelection(int[] input, int n)
 {
 for (int i = 0; i < n - 1; i++)
 {
 var minId = i;
 int j;
 for (j = i + 1; j < n; j++)
 {
 if (input[j] < input[minId]) minId = j;
 }
 var temp = input[minId];

https://i.stack.imgur.com/CaSlf.jpg

Algorithms Notes for Professionals 150

 input[minId] = input[i];
 input[i] = temp;
 }
 }

 public static int[] Main(int[] input)
 {
 SortSelection(input, input.Length);
 return input;
 }
}

Algorithms Notes for Professionals 151

Chapter 34: Trees
Section 34.1: Typical anary tree representation
Typically we represent an anary tree (one with potentially unlimited children per node) as a binary tree, (one with
exactly two children per node). The "next" child is regarded as a sibling. Note that if a tree is binary, this
representation creates extra nodes.

We then iterate over the siblings and recurse down the children. As most trees are relatively shallow - lots of
children but only a few levels of hierarchy, this gives rise to efficient code. Note human genealogies are an
exception (lots of levels of ancestors, only a few children per level).

If necessary back pointers can be kept to allow the tree to be ascended. These are more difficult to maintain.

Note that it is typical to have one function to call on the root and a recursive function with extra parameters, in this
case tree depth.

 struct node
 {
 struct node *next;
 struct node *child;
 std::string data;
 }

 void printtree_r(struct node *node, int depth)
 {
 int i;

 while(node)
 {
 if(node->child)
 {
 for(i=0;i<depth*3;i++)
 printf(" ");
 printf("{\n"):
 printtree_r(node->child, depth +1);
 for(i=0;i<depth*3;i++)
 printf(" ");
 printf("{\n"):

 for(i=0;i<depth*3;i++)
 printf(" ");
 printf("%s\n", node->data.c_str());

 node = node->next;
 }
 }
 }

 void printtree(node *root)
 {
 printree_r(root, 0);
 }

Section 34.2: Introduction
Trees are a sub-type of the more general node-edge graph data structure.

https://en.wikipedia.org/wiki/Tree_(graph_theory)

Algorithms Notes for Professionals 152

To be a tree, a graph must satisfy two requirements:

It is acyclic. It contains no cycles (or "loops").
It is connected. For any given node in the graph, every node is reachable. All nodes are reachable through
one path in the graph.

The tree data structure is quite common within computer science. Trees are used to model many different
algorithmic data structures, such as ordinary binary trees, red-black trees, B-trees, AB-trees, 23-trees, Heap, and
tries.

it is common to refer to a Tree as a Rooted Tree by:

choosing 1 cell to be called `Root`
painting the `Root` at the top
creating lower layer for each cell in the graph depending on their distance from the root -the
bigger the distance, the lower the cells (example above)

common symbol for trees: T

Section 34.3: To check if two Binary trees are same or not
For example if the inputs are:1.

Example:1

a)

http://i.stack.imgur.com/BmT3t.png

Algorithms Notes for Professionals 153

b)

Output should be true.

Example:2

If the inputs are:

a)

b)

Output should be false.

Pseudo code for the same:

boolean sameTree(node root1, node root2){

https://i.stack.imgur.com/Gzckc.png
https://i.stack.imgur.com/y2dy0.png
https://i.stack.imgur.com/C8jj7.png
https://i.stack.imgur.com/BBfnO.png

Algorithms Notes for Professionals 154

if(root1 == NULL && root2 == NULL)
return true;

if(root1 == NULL || root2 == NULL)
return false;

if(root1->data == root2->data
 && sameTree(root1->left,root2->left)
 && sameTree(root1->right, root2->right))
return true;

}

Algorithms Notes for Professionals 155

Chapter 35: Binary Search Trees
Binary tree is a tree that each node in it has maximum of two children. Binary search tree (BST) is a binary tree
which its elements positioned in special order. In each BST all values(i.e key) in left sub tree are less than values in
right sub tree.

Section 35.1: Binary Search Tree - Insertion (Python)
This is a simple implementation of Binary Search Tree Insertion using Python.

An example is shown below:

Following the code snippet each image shows the execution visualization which makes it easier to visualize how this
code works.

class Node:
 def __init__(self, val):
 self.l_child = None
 self.r_child = None
 self.data = val

def insert(root, node):
 if root is None:
 root = node
 else:
 if root.data > node.data:
 if root.l_child is None:
 root.l_child = node
 else:
 insert(root.l_child, node)
 else:
 if root.r_child is None:

http://i.stack.imgur.com/3NG0e.gif
http://i.stack.imgur.com/GlqkB.png

Algorithms Notes for Professionals 156

 root.r_child = node
 else:
 insert(root.r_child, node)

def in_order_print(root):
 if not root:
 return
 in_order_print(root.l_child)
 print root.data
 in_order_print(root.r_child)

def pre_order_print(root):
 if not root:
 return
 print root.data
 pre_order_print(root.l_child)
 pre_order_print(root.r_child)

http://i.stack.imgur.com/zwGtx.png
http://i.stack.imgur.com/5fGHu.png

Algorithms Notes for Professionals 157

Section 35.2: Binary Search Tree - Deletion(C++)
Before starting with deletion I just want to put some lights on what is a Binary search tree(BST), Each node in a BST
can have maximum of two nodes(left and right child).The left sub-tree of a node has a key less than or equal to its
parent node's key. The right sub-tree of a node has a key greater than to its parent node's key.

Deleting a node in a tree while maintaining its Binary search tree property.

There are three cases to be considered while deleting a node.

Case 1: Node to be deleted is the leaf node.(Node with value 22).
Case 2: Node to be deleted has one child.(Node with value 26).
Case 3: Node to be deleted has both children.(Node with value 49).

Explanation of cases:

When the node to be deleted is a leaf node then simply delete the node and pass nullptr to its parent node.1.
When a node to be deleted is having only one child then copy the child value to the node value and delete2.
the child (Converted to case 1)
When a node to be delete is having two childs then the minimum from its right sub tree can be copied to the3.
node and then the minimum value can be deleted from the node's right subtree (Converted to Case 2)

Note: The minimum in the right sub tree can have a maximum of one child and that too right child if it's having the
left child that means it's not the minimum value or it's not following BST property.

http://i.stack.imgur.com/lOXwz.png
https://i.stack.imgur.com/TTM4d.png

Algorithms Notes for Professionals 158

The structure of a node in a tree and the code for Deletion:

struct node
{
 int data;
 node *left, *right;
};

node* delete_node(node *root, int data)
{
 if(root == nullptr) return root;
 else if(data < root->data) root->left = delete_node(root->left, data);
 else if(data > root->data) root->right = delete_node(root->right, data);

 else
 {
 if(root->left == nullptr && root->right == nullptr) // Case 1
 {
 free(root);
 root = nullptr;
 }
 else if(root->left == nullptr) // Case 2
 {
 node* temp = root;
 root= root->right;
 free(temp);
 }
 else if(root->right == nullptr) // Case 2
 {
 node* temp = root;
 root = root->left;
 free(temp);
 }
 else // Case 3
 {
 node* temp = root->right;

 while(temp->left != nullptr) temp = temp->left;

 root->data = temp->data;
 root->right = delete_node(root->right, temp->data);
 }
 }
 return root;
}

Time complexity of above code is O(h), where h is the height of the tree.

Section 35.3: Lowest common ancestor in a BST
Consider the BST:

Algorithms Notes for Professionals 159

Lowest common ancestor of 22 and 26 is 24

Lowest common ancestor of 26 and 49 is 46

Lowest common ancestor of 22 and 24 is 24

Binary search tree property can be used for finding nodes lowest ancestor

Psuedo code:

lowestCommonAncestor(root,node1, node2){

if(root == NULL)
return NULL;

 else if(node1->data == root->data || node2->data== root->data)
 return root;

 else if((node1->data <= root->data && node2->data > root->data)
 || (node2->data <= root->data && node1->data > root->data)){

 return root;
 }

 else if(root->data > max(node1->data,node2->data)){
 return lowestCommonAncestor(root->left, node1, node2);
 }

 else {
 return lowestCommonAncestor(root->right, node1, node2);
 }
 }

Section 35.4: Binary Search Tree - Python
class Node(object):
 def __init__(self, val):
 self.l_child = None
 self.r_child = None
 self.val = val

class BinarySearchTree(object):
 def insert(self, root, node):

https://i.stack.imgur.com/Y1QA4.png

Algorithms Notes for Professionals 160

 if root is None:
 return node

 if root.val < node.val:
 root.r_child = self.insert(root.r_child, node)
 else:
 root.l_child = self.insert(root.l_child, node)

 return root

 def in_order_place(self, root):
 if not root:
 return None
 else:
 self.in_order_place(root.l_child)
 print root.val
 self.in_order_place(root.r_child)

 def pre_order_place(self, root):
 if not root:
 return None
 else:
 print root.val
 self.pre_order_place(root.l_child)
 self.pre_order_place(root.r_child)

 def post_order_place(self, root):
 if not root:
 return None
 else:
 self.post_order_place(root.l_child)
 self.post_order_place(root.r_child)
 print root.val

""" Create different node and insert data into it"""

r = Node(3)
node = BinarySearchTree()
nodeList = [1, 8, 5, 12, 14, 6, 15, 7, 16, 8]

for nd in nodeList:
 node.insert(r, Node(nd))

print "------In order ---------"
print (node.in_order_place(r))
print "------Pre order ---------"
print (node.pre_order_place(r))
print "------Post order ---------"
print (node.post_order_place(r))

Algorithms Notes for Professionals 161

Chapter 36: Check if a tree is BST or not
Section 36.1: Algorithm to check if a given binary tree is BST
A binary tree is BST if it satisfies any one of the following condition:

It is empty1.
It has no subtrees2.
For every node x in the tree all the keys (if any) in the left sub tree must be less than key(x) and all the keys (if3.
any) in the right sub tree must be greater than key(x).

So a straightforward recursive algorithm would be:

is_BST(root):
 if root == NULL:
 return true

 // Check values in left subtree
 if root->left != NULL:
 max_key_in_left = find_max_key(root->left)
 if max_key_in_left > root->key:
 return false

 // Check values in right subtree
 if root->right != NULL:
 min_key_in_right = find_min_key(root->right)
 if min_key_in_right < root->key:
 return false

 return is_BST(root->left) && is_BST(root->right)

The above recursive algorithm is correct but inefficient, because it traverses each node mutiple times.

Another approach to minimize the multiple visits of each node is to remember the min and max possible values of
the keys in the subtree we are visiting. Let the minimum possible value of any key be K_MIN and maximum value be
K_MAX. When we start from the root of the tree, the range of values in the tree is [K_MIN,K_MAX]. Let the key of root
node be x. Then the range of values in left subtree is [K_MIN,x) and the range of values in right subtree is
(x,K_MAX]. We will use this idea to develop a more efficient algorithm.

is_BST(root, min, max):
 if root == NULL:
 return true

 // is the current node key out of range?
 if root->key < min || root->key > max:
 return false

 // check if left and right subtree is BST
 return is_BST(root->left,min,root->key-1) && is_BST(root->right,root->key+1,max)

It will be initially called as:

is_BST(my_tree_root,KEY_MIN,KEY_MAX)

Another approach will be to do inorder traversal of the Binary tree. If the inorder traversal produces a sorted
sequence of keys then the given tree is a BST. To check if the inorder sequence is sorted remember the value of

Algorithms Notes for Professionals 162

previously visited node and compare it against the current node.

Section 36.2: If a given input tree follows Binary search tree
property or not
For example

if the input is:

Output should be false:

As 4 in the left sub-tree is greater than the root value(3)

If the input is:

Output should be true

https://i.stack.imgur.com/sd2Zq.png
https://i.stack.imgur.com/GR41M.png

Algorithms Notes for Professionals 163

Chapter 37: Binary Tree traversals
Visiting a node of a binary tree in some particular order is called traversals.

Section 37.1: Level Order traversal - Implementation
For example if the given tree is:

Level order traversal will be

1 2 3 4 5 6 7

Printing node data level by level.

Code:

#include<iostream>
#include<queue>
#include<malloc.h>

using namespace std;

struct node{

 int data;
 node *left;
 node *right;
};

void levelOrder(struct node *root){

 if(root == NULL) return;

 queue<node *> Q;
 Q.push(root);

 while(!Q.empty()){
 struct node* curr = Q.front();
 cout<< curr->data <<" ";
 if(curr->left != NULL) Q.push(curr-> left);
 if(curr->right != NULL) Q.push(curr-> right);

 Q.pop();

 }

https://i.stack.imgur.com/7Kz71.png

Algorithms Notes for Professionals 164

}
struct node* newNode(int data)
{
 struct node* node = (struct node*)
 malloc(sizeof(struct node));
 node->data = data;
 node->left = NULL;
 node->right = NULL;

 return(node);
}

int main(){

 struct node *root = newNode(1);
 root->left = newNode(2);
 root->right = newNode(3);
 root->left->left = newNode(4);
 root->left->right = newNode(5);
 root->right->left = newNode(6);
 root->right->right = newNode(7);

 printf("Level Order traversal of binary tree is \n");
 levelOrder(root);

 return 0;

}

Queue data structure is used to achieve the above objective.

Section 37.2: Pre-order, Inorder and Post Order traversal of a
Binary Tree
Consider the Binary Tree:

Pre-order traversal(root) is traversing the node then left sub-tree of the node and then the right sub-tree of the
node.

So the pre-order traversal of above tree will be:

1 2 4 5 3 6 7

In-order traversal(root) is traversing the left sub-tree of the node then the node and then right sub-tree of the

https://i.stack.imgur.com/4oxnI.png

Algorithms Notes for Professionals 165

node.

So the in-order traversal of above tree will be:

4 2 5 1 6 3 7

Post-order traversal(root) is traversing the left sub-tree of the node then the right sub-tree and then the node.

So the post-order traversal of above tree will be:

4 5 2 6 7 3 1

Algorithms Notes for Professionals 166

Chapter 38: Lowest common ancestor of a
Binary Tree
Lowest common ancestor between two nodes n1 and n2 is defined as the lowest node in the tree that has both n1
and n2 as descendants.

Section 38.1: Finding lowest common ancestor
Consider the tree:

Lowest common ancestor of nodes with value 1 and 4 is 2

Lowest common ancestor of nodes with value 1 and 5 is 3

Lowest common ancestor of nodes with value 2 and 4 is 4

Lowest common ancestor of nodes with value 1 and 2 is 2

https://i.stack.imgur.com/C4UqM.png

Algorithms Notes for Professionals 167

Chapter 39: Searching
Section 39.1: Binary Search
Introduction

Binary Search is a Divide and Conquer search algorithm. It uses O(log n) time to find the location of an element in
a search space where n is the size of the search space.

Binary Search works by halving the search space at each iteration after comparing the target value to the middle
value of the search space.

To use Binary Search, the search space must be ordered (sorted) in some way. Duplicate entries (ones that
compare as equal according to the comparison function) cannot be distinguished, though they don't violate the
Binary Search property.

Conventionally, we use less than (<) as the comparison function. If a < b, it will return true. if a is not less than b and
b is not less than a, a and b are equal.

Example Question

You are an economist, a pretty bad one though. You are given the task of finding the equilibrium price (that is, the
price where supply = demand) for rice.

Remember the higher a price is set, the larger the supply and the lesser the demand

As your company is very efficient at calculating market forces, you can instantly get the supply and demand in units
of rice when the price of rice is set at a certain price p.

Your boss wants the equilibrium price ASAP, but tells you that the equilibrium price can be a positive integer that is
at most 10^17 and there is guaranteed to be exactly 1 positive integer solution in the range. So get going with your
job before you lose it!

You are allowed to call functions getSupply(k) and getDemand(k), which will do exactly what is stated in the
problem.

Example Explanation

Here our search space is from 1 to 10^17. Thus a linear search is infeasible.

However, notice that as the k goes up, getSupply(k) increases and getDemand(k) decreases. Thus, for any x > y,
getSupply(x) - getDemand(x) > getSupply(y) - getDemand(y). Therefore, this search space is monotonic and
we can use Binary Search.

The following psuedocode demonstrates the usage of Binary Search:

high = 100000000000000000 <- Upper bound of search space
low = 1 <- Lower bound of search space
while high - low > 1
 mid = (high + low) / 2 <- Take the middle value
 supply = getSupply(mid)
 demand = getDemand(mid)
 if supply > demand
 high = mid <- Solution is in lower half of search space
 else if demand > supply

Algorithms Notes for Professionals 168

 low = mid <- Solution is in upper half of search space
 else <- supply==demand condition
 return mid <- Found solution

This algorithm runs in ~O(log 10^17) time. This can be generalized to ~O(log S) time where S is the size of the
search space since at every iteration of the while loop, we halved the search space (from [low:high] to either
[low:mid] or [mid:high]).

C Implementation of Binary Search with Recursion

int binsearch(int a[], int x, int low, int high) {
 int mid;

 if (low > high)
 return -1;

 mid = (low + high) / 2;

 if (x == a[mid]) {
 return (mid);
 } else
 if (x < a[mid]) {
 binsearch(a, x, low, mid - 1);
 } else {
 binsearch(a, x, mid + 1, high);
 }
}

Section 39.2: Rabin Karp
The Rabin–Karp algorithm or Karp–Rabin algorithm is a string searching algorithm that uses hashing to find any one
of a set of pattern strings in a text.Its average and best case running time is O(n+m) in space O(p), but its worst-case
time is O(nm) where n is the length of the text and m is the length of the pattern.

Algorithm implementation in java for string matching

void RabinfindPattern(String text,String pattern){
 /*
 q a prime number
 p hash value for pattern
 t hash value for text
 d is the number of unique characters in input alphabet
 */
 int d=128;
 int q=100;
 int n=text.length();
 int m=pattern.length();
 int t=0,p=0;
 int h=1;
 int i,j;
//hash value calculating function
 for (i=0;i<m-1;i++)
 h = (h*d)%q;
 for (i=0;i<m;i++){
 p = (d*p + pattern.charAt(i))%q;
 t = (d*t + text.charAt(i))%q;
 }
//search for the pattern
 for(i=0;i<end-m;i++){

Algorithms Notes for Professionals 169

 if(p==t){
//if the hash value matches match them character by character
 for(j=0;j<m;j++)
 if(text.charAt(j+i)!=pattern.charAt(j))
 break;
 if(j==m && i>=start)
 System.out.println("Pattern match found at index "+i);
 }
 if(i<end-m){
 t =(d*(t - text.charAt(i)*h) + text.charAt(i+m))%q;
 if(t<0)
 t=t+q;
 }
 }
}

While calculating hash value we are dividing it by a prime number in order to avoid collision.After dividing by prime
number the chances of collision will be less, but still ther is a chance that the hash value can be same for two
strings,so when we get a match we have to check it character by character to make sure that we got a proper
match.

t =(d*(t - text.charAt(i)*h) + text.charAt(i+m))%q;

This is to recalculate the hash value for pattern,first by removing the left most character and then adding the new
character from the text.

Section 39.3: Analysis of Linear search (Worst, Average and
Best Cases)
We can have three cases to analyze an algorithm:

Worst Case1.

Average Case2.

Best Case3.

#include <stdio.h>

// Linearly search x in arr[]. If x is present then return the index,

// otherwise return -1
int search(int arr[], int n, int x)
{
 int i;
 for (i=0; i<n; i++)
 {
 if (arr[i] == x)
 return i;
 }

 return -1;
}

/* Driver program to test above functions*/

int main()
{

Algorithms Notes for Professionals 170

 int arr[] = {1, 10, 30, 15};
 int x = 30;
 int n = sizeof(arr)/sizeof(arr[0]);
 printf("%d is present at index %d", x, search(arr, n, x));

 getchar();
 return 0;
}

Worst Case Analysis (Usually Done)

In the worst case analysis, we calculate upper bound on running time of an algorithm. We must know the case that
causes maximum number of operations to be executed. For Linear Search, the worst case happens when the
element to be searched (x in the above code) is not present in the array. When x is not present, the search()
functions compares it with all the elements of arr[] one by one. Therefore, the worst case time complexity of linear
search would be ?(n)

Average Case Analysis (Sometimes done)

In average case analysis, we take all possible inputs and calculate computing time for all of the inputs. Sum all the
calculated values and divide the sum by total number of inputs. We must know (or predict) distribution of cases. For
the linear search problem, let us assume that all cases are uniformly distributed (including the case of x not being
present in array). So we sum all the cases and divide the sum by (n+1). Following is the value of average case time
complexity.

Best Case Analysis (Bogus)

In the best case analysis, we calculate lower bound on running time of an algorithm. We must know the case that
causes minimum number of operations to be executed. In the linear search problem, the best case occurs when x
is present at the first location. The number of operations in the best case is constant (not dependent on n). So time
complexity in the best case would be ?(1) Most of the times, we do worst case analysis to analyze algorithms. In the
worst analysis, we guarantee an upper bound on the running time of an algorithm which is good information. The
average case analysis is not easy to do in most of the practical cases and it is rarely done. In the average case
analysis, we must know (or predict) the mathematical distribution of all possible inputs. The Best Case analysis is
bogus. Guaranteeing a lower bound on an algorithm doesn’t provide any information as in the worst case, an
algorithm may take years to run.

For some algorithms, all the cases are asymptotically same, i.e., there are no worst and best cases. For example,
Merge Sort. Merge Sort does ?(nLogn) operations in all cases. Most of the other sorting algorithms have worst and
best cases. For example, in the typical implementation of Quick Sort (where pivot is chosen as a corner element),
the worst occurs when the input array is already sorted and the best occur when the pivot elements always divide
array in two halves. For insertion sort, the worst case occurs when the array is reverse sorted and the best case
occurs when the array is sorted in the same order as output.

https://i.stack.imgur.com/UyxRr.jpg

Algorithms Notes for Professionals 171

Section 39.4: Binary Search: On Sorted Numbers
It's easiest to show a binary search on numbers using pseudo-code

int array[1000] = { sorted list of numbers };
int N = 100; // number of entries in search space;
int high, low, mid; // our temporaries
int x; // value to search for

low = 0;
high = N -1;
while(low < high)
{
 mid = (low + high)/2;
 if(array[mid] < x)
 low = mid + 1;
 else
 high = mid;
}
if(array[low] == x)
 // found, index is low
else
 // not found

Do not attempt to return early by comparing array[mid] to x for equality. The extra comparison can only slow the
code down. Note you need to add one to low to avoid becoming trapped by integer division always rounding down.

Interestingly, the above version of binary search allows you to find the smallest occurrence of x in the array. If the
array contains duplicates of x, the algorithm can be modified slightly in order for it to return the largest occurrence
of x by simply adding to the if conditional:

while(low < high)
 {
 mid = low + ((high - low) / 2);
 if(array[mid] < x || (array[mid] == x && array[mid + 1] == x))
 low = mid + 1;
 else
 high = mid;
 }

Note that instead of doing mid = (low + high) / 2, it may also be a good idea to try mid = low + ((high - low)
/ 2) for implementations such as Java implementations to lower the risk of getting an overflow for really large
inputs.

Section 39.5: Linear search
Linear search is a simple algorithm. It loops through items until the query has been found, which makes it a linear
algorithm - the complexity is O(n), where n is the number of items to go through.

Why O(n)? In worst-case scenario, you have to go through all of the n items.

It can be compared to looking for a book in a stack of books - you go through them all until you find the one that
you want.

Below is a Python implementation:

def linear_search(searchable_list, query):

Algorithms Notes for Professionals 172

 for x in searchable_list:
 if query == x:
 return True
 return False

linear_search(['apple', 'banana', 'carrot', 'fig', 'garlic'], 'fig') #returns True

Algorithms Notes for Professionals 173

Chapter 40: Substring Search
Section 40.1: Introduction To Knuth-Morris-Pratt (KMP)
Algorithm
Suppose that we have a text and a pattern. We need to determine if the pattern exists in the text or not. For
example:

+-------+---+---+---+---+---+---+---+---+
| Index | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
+-------+---+---+---+---+---+---+---+---+
| Text | a | b | c | b | c | g | l | x |
+-------+---+---+---+---+---+---+---+---+

+---------+---+---+---+---+
| Index | 0 | 1 | 2 | 3 |
+---------+---+---+---+---+
| Pattern | b | c | g | l |
+---------+---+---+---+---+

This pattern does exist in the text. So our substring search should return 3, the index of the position from which this
pattern starts. So how does our brute force substring search procedure work?

What we usually do is: we start from the 0th index of the text and the 0th index of our *pattern and we compare
Text[0] with Pattern[0]. Since they are not a match, we go to the next index of our text and we compare Text[1]
with Pattern[0]. Since this is a match, we increment the index of our pattern and the index of the Text also. We
compare Text[2] with Pattern[1]. They are also a match. Following the same procedure stated before, we now
compare Text[3] with Pattern[2]. As they do not match, we start from the next position where we started finding
the match. That is index 2 of the Text. We compare Text[2] with Pattern[0]. They don't match. Then incrementing
index of the Text, we compare Text[3] with Pattern[0]. They match. Again Text[4] and Pattern[1] match, Text[5]
and Pattern[2] match and Text[6] and Pattern[3] match. Since we've reached the end of our Pattern, we now
return the index from which our match started, that is 3. If our pattern was: bcgll, that means if the pattern didn't
exist in our text, our search should return exception or -1 or any other predefined value. We can clearly see that, in
the worst case, this algorithm would take O(mn) time where m is the length of the Text and n is the length of the
Pattern. How do we reduce this time complexity? This is where KMP Substring Search Algorithm comes into the
picture.

The Knuth-Morris-Pratt String Searching Algorithm or KMP Algorithm searches for occurrences of a "Pattern" within
a main "Text" by employing the observation that when a mismatch occurs, the word itself embodies sufficient
information to determine where the next match could begin, thus bypassing re-examination of previously matched
characters. The algorithm was conceived in 1970 by Donuld Knuth and Vaughan Pratt and independently by James
H. Morris. The trio published it jointly in 1977.

Let's extend our example Text and Pattern for better understanding:

+-------+
| Index |0 |1 |2 |3 |4 |5 |6 |7 |8 |9 |10|11|12|13|14|15|16|17|18|19|20|21|22|
+-------+
| Text |a |b |c |x |a |b |c |d |a |b |x |a |b |c |d |a |b |c |d |a |b |c |y |
+-------+

+---------+---+---+---+---+---+---+---+---+
| Index | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |

https://en.wikipedia.org/wiki/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm
https://en.wikipedia.org/wiki/Donald_Knuth
https://en.wikipedia.org/wiki/Vaughan_Pratt
https://en.wikipedia.org/wiki/James_H._Morris
https://en.wikipedia.org/wiki/James_H._Morris

Algorithms Notes for Professionals 174

+---------+---+---+---+---+---+---+---+---+
| Pattern | a | b | c | d | a | b | c | y |
+---------+---+---+---+---+---+---+---+---+

At first, our Text and Pattern matches till index 2. Text[3] and Pattern[3] doesn't match. So our aim is to not go
backwards in this Text, that is, in case of a mismatch, we don't want our matching to begin again from the position
that we started matching with. To achieve that, we'll look for a suffix in our Pattern right before our mismatch
occurred (substring abc), which is also a prefix of the substring of our Pattern. For our example, since all the
characters are unique, there is no suffix, that is the prefix of our matched substring. So what that means is, our
next comparison will start from index 0. Hold on for a bit, you'll understand why we did this. Next, we compare
Text[3] with Pattern[0] and it doesn't match. After that, for Text from index 4 to index 9 and for Pattern from index
0 to index 5, we find a match. We find a mismatch in Text[10] and Pattern[6]. So we take the substring from Pattern
right before the point where mismatch occurs (substring abcdabc), we check for a suffix, that is also a prefix of this
substring. We can see here ab is both the suffix and prefix of this substring. What that means is, since we've
matched until Text[10], the characters right before the mismatch is ab. What we can infer from it is that since ab is
also a prefix of the substring we took, we don't have to check ab again and the next check can start from Text[10]
and Pattern[2]. We didn't have to look back to the whole Text, we can start directly from where our mismatch
occurred. Now we check Text[10] and Pattern[2], since it's a mismatch, and the substring before mismatch (abc)
doesn't contain a suffix which is also a prefix, we check Text[10] and Pattern[0], they don't match. After that for
Text from index 11 to index 17 and for Pattern from index 0 to index 6. We find a mismatch in Text[18] and
Pattern[7]. So again we check the substring before mismatch (substring abcdabc) and find abc is both the suffix
and the prefix. So since we matched till Pattern[7], abc must be before Text[18]. That means, we don't need to
compare until Text[17] and our comparison will start from Text[18] and Pattern[3]. Thus we will find a match and
we'll return 15 which is our starting index of the match. This is how our KMP Substring Search works using suffix
and prefix information.

Now, how do we efficiently compute if suffix is same as prefix and at what point to start the check if there is a
mismatch of character between Text and Pattern. Let's take a look at an example:

+---------+---+---+---+---+---+---+---+---+
| Index | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
+---------+---+---+---+---+---+---+---+---+
| Pattern | a | b | c | d | a | b | c | a |
+---------+---+---+---+---+---+---+---+---+

We'll generate an array containing the required information. Let's call the array S. The size of the array will be same
as the length of the pattern. Since the first letter of the Pattern can't be the suffix of any prefix, we'll put S[0] = 0. We
take i = 1 and j = 0 at first. At each step we compare Pattern[i] and Pattern[j] and increment i. If there is a match
we put S[i] = j + 1 and increment j, if there is a mismatch, we check the previous value position of j (if available) and
set j = S[j-1] (if j is not equal to 0), we keep doing this until S[j] doesn't match with S[i] or j doesn't become 0. For the
later one, we put S[i] = 0. For our example:

 j i
+---------+---+---+---+---+---+---+---+---+
| Index | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
+---------+---+---+---+---+---+---+---+---+
| Pattern | a | b | c | d | a | b | c | a |
+---------+---+---+---+---+---+---+---+---+

Pattern[j] and Pattern[i] don't match, so we increment i and since j is 0, we don't check the previous value and put
Pattern[i] = 0. If we keep incrementing i, for i = 4, we'll get a match, so we put S[i] = S[4] = j + 1 = 0 + 1 = 1 and

Algorithms Notes for Professionals 175

increment j and i. Our array will look like:

 j i
+---------+---+---+---+---+---+---+---+---+
| Index | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
+---------+---+---+---+---+---+---+---+---+
| Pattern | a | b | c | d | a | b | c | a |
+---------+---+---+---+---+---+---+---+---+
| S | 0 | 0 | 0 | 0 | 1 | | | |
+---------+---+---+---+---+---+---+---+---+

Since Pattern[1] and Pattern[5] is a match, we put S[i] = S[5] = j + 1 = 1 + 1 = 2. If we continue, we'll find a
mismatch for j = 3 and i = 7. Since j is not equal to 0, we put j = S[j-1]. And we'll compare the characters at i and j
are same or not, since they are same, we'll put S[i] = j + 1. Our completed array will look like:

+---------+---+---+---+---+---+---+---+---+
| S | 0 | 0 | 0 | 0 | 1 | 2 | 3 | 1 |
+---------+---+---+---+---+---+---+---+---+

This is our required array. Here a nonzero-value of S[i] means there is a S[i] length suffix same as the prefix in that
substring (substring from 0 to i) and the next comparison will start from S[i] + 1 position of the Pattern. Our
algorithm to generate the array would look like:

Procedure GenerateSuffixArray(Pattern):
i := 1
j := 0
n := Pattern.length
while i is less than n
 if Pattern[i] is equal to Pattern[j]
 S[i] := j + 1
 j := j + 1
 i := i + 1
 else
 if j is not equal to 0
 j := S[j-1]
 else
 S[i] := 0
 i := i + 1
 end if
 end if
end while

The time complexity to build this array is O(n) and the space complexity is also O(n). To make sure if you have
completely understood the algorithm, try to generate an array for pattern aabaabaa and check if the result matches
with this one.

Now let's do a substring search using the following example:

+---------+---+---+---+---+---+---+---+---+---+---+---+---+
| Index | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |10 |11 |
+---------+---+---+---+---+---+---+---+---+---+---+---+---+
| Text | a | b | x | a | b | c | a | b | c | a | b | y |
+---------+---+---+---+---+---+---+---+---+---+---+---+---+

+---------+---+---+---+---+---+---+
| Index | 0 | 1 | 2 | 3 | 4 | 5 |

https://i.stack.imgur.com/4aqZk.jpg

Algorithms Notes for Professionals 176

+---------+---+---+---+---+---+---+
| Pattern | a | b | c | a | b | y |
+---------+---+---+---+---+---+---+
| S | 0 | 0 | 0 | 1 | 2 | 0 |
+---------+---+---+---+---+---+---+

We have a Text, a Pattern and a pre-calculated array S using our logic defined before. We compare Text[0] and
Pattern[0] and they are same. Text[1] and Pattern[1] are same. Text[2] and Pattern[2] are not same. We check
the value at the position right before the mismatch. Since S[1] is 0, there is no suffix that is same as the prefix in our
substring and our comparison starts at position S[1], which is 0. So Pattern[0] is not same as Text[2], so we move
on. Text[3] is same as Pattern[0] and there is a match till Text[8] and Pattern[5]. We go one step back in the S
array and find 2. So this means there is a prefix of length 2 which is also the suffix of this substring (abcab) which is
ab. That also means that there is an ab before Text[8]. So we can safely ignore Pattern[0] and Pattern[1] and start
our next comparison from Pattern[2] and Text[8]. If we continue, we'll find the Pattern in the Text. Our procedure
will look like:

Procedure KMP(Text, Pattern)
GenerateSuffixArray(Pattern)
m := Text.Length
n := Pattern.Length
i := 0
j := 0
while i is less than m
 if Pattern[j] is equal to Text[i]
 j := j + 1
 i := i + 1
 if j is equal to n
 Return (j-i)
 else if i < m and Pattern[j] is not equal t Text[i]
 if j is not equal to 0
 j = S[j-1]
 else
 i := i + 1
 end if
 end if
end while
Return -1

The time complexity of this algorithm apart from the Suffix Array Calculation is O(m). Since GenerateSuffixArray takes
O(n), the total time complexity of KMP Algorithm is: O(m+n).

PS: If you want to find multiple occurrences of Pattern in the Text, instead of returning the value, print it/store it and
set j := S[j-1]. Also keep a flag to track whether you have found any occurrence or not and handle it
accordingly.

Section 40.2: Introduction to Rabin-Karp Algorithm
Rabin-Karp Algorithm is a string searching algorithm created by Richard M. Karp and Michael O. Rabin that uses
hashing to find any one of a set of pattern strings in a text.

A substring of a string is another string that occurs in. For example, ver is a substring of stackoverflow. Not to be
confused with subsequence because cover is a subsequence of the same string. In other words, any subset of
consecutive letters in a string is a substring of the given string.

In Rabin-Karp algorithm, we'll generate a hash of our pattern that we are looking for & check if the rolling hash of
our text matches the pattern or not. If it doesn't match, we can guarantee that the pattern doesn't exist in the text.

https://en.wikipedia.org/wiki/Rabin%E2%80%93Karp_algorithm
https://en.wikipedia.org/wiki/Richard_M._Karp
https://en.wikipedia.org/wiki/Michael_O._Rabin

Algorithms Notes for Professionals 177

However, if it does match, the pattern can be present in the text. Let's look at an example:

Let's say we have a text: yeminsajid and we want to find out if the pattern nsa exists in the text. To calculate the
hash and rolling hash, we'll need to use a prime number. This can be any prime number. Let's take prime = 11 for
this example. We'll determine hash value using this formula:

(1st letter) X (prime) + (2nd letter) X (prime)¹ + (3rd letter) X (prime)² X +

We'll denote:

a -> 1 g -> 7 m -> 13 s -> 19 y -> 25
b -> 2 h -> 8 n -> 14 t -> 20 z -> 26
c -> 3 i -> 9 o -> 15 u -> 21
d -> 4 j -> 10 p -> 16 v -> 22
e -> 5 k -> 11 q -> 17 w -> 23
f -> 6 l -> 12 r -> 18 x -> 24

The hash value of nsa will be:

 14 X 11? + 19 X 11¹ + 1 X 11² = 344

Now we find the rolling-hash of our text. If the rolling hash matches with the hash value of our pattern, we'll check if
the strings match or not. Since our pattern has 3 letters, we'll take 1st 3 letters yem from our text and calculate
hash value. We get:

25 X 11? + 5 X 11¹ + 13 X 11² = 1653

This value doesn't match with our pattern's hash value. So the string doesn't exists here. Now we need to consider
the next step. To calculate the hash value of our next string emi. We can calculate this using our formula. But that
would be rather trivial and cost us more. Instead, we use another technique.

We subtract the value of the First Letter of Previous String from our current hash value. In this case, y. We
get, 1653 - 25 = 1628.
We divide the difference with our prime, which is 11 for this example. We get, 1628 / 11 = 148.
We add new letter X (prime)??¹, where m is the length of the pattern, with the quotient, which is i = 9. We
get, 148 + 9 X 11² = 1237.

The new hash value is not equal to our patterns hash value. Moving on, for n we get:

Previous String: emi
First Letter of Previous String: e(5)
New Letter: n(14)
New String: "min"
1237 - 5 = 1232
1232 / 11 = 112
112 + 14 X 11² = 1806

It doesn't match. After that, for s, we get:

Previous String: min
First Letter of Previous String: m(13)
New Letter: s(19)
New String: "ins"
1806 - 13 = 1793
1793 / 11 = 163

Algorithms Notes for Professionals 178

163 + 19 X 11² = 2462

It doesn't match. Next, for a, we get:

Previous String: ins
First Letter of Previous String: i(9)
New Letter: a(1)
New String: "nsa"
2462 - 9 = 2453
2453 / 11 = 223
223 + 1 X 11² = 344

It's a match! Now we compare our pattern with the current string. Since both the strings match, the substring exists
in this string. And we return the starting position of our substring.

The pseudo-code will be:

Hash Calculation:

Procedure Calculate-Hash(String, Prime, x):
hash := 0 // Here x denotes the length to be considered
for m from 1 to x // to find the hash value
 hash := hash + (Value of String[m])??¹
end for
Return hash

Hash Recalculation:

Procedure Recalculate-Hash(String, Curr, Prime, Hash):
Hash := Hash - Value of String[Curr] //here Curr denotes First Letter of Previous String
Hash := Hash / Prime
m := String.length
New := Curr + m - 1
Hash := Hash + (Value of String[New])??¹
Return Hash

String Match:

Procedure String-Match(Text, Pattern, m):
for i from m to Pattern-length + m - 1
 if Text[i] is not equal to Pattern[i]
 Return false
 end if
end for
Return true

Rabin-Karp:

Procedure Rabin-Karp(Text, Pattern, Prime):
m := Pattern.Length
HashValue := Calculate-Hash(Pattern, Prime, m)
CurrValue := Calculate-Hash(Pattern, Prime, m)
for i from 1 to Text.length - m
 if HashValue == CurrValue and String-Match(Text, Pattern, i) is true
 Return i
 end if
 CurrValue := Recalculate-Hash(String, i+1, Prime, CurrValue)
end for

Algorithms Notes for Professionals 179

Return -1

If the algorithm doesn't find any match, it simply returns -1.

This algorithm is used in detecting plagiarism. Given source material, the algorithm can rapidly search through a
paper for instances of sentences from the source material, ignoring details such as case and punctuation. Because
of the abundance of the sought strings, single-string searching algorithms are impractical here. Again, Knuth-
Morris-Pratt algorithm or Boyer-Moore String Search algorithm is faster single pattern string searching
algorithm, than Rabin-Karp. However, it is an algorithm of choice for multiple pattern search. If we want to find any
of the large number, say k, fixed length patterns in a text, we can create a simple variant of the Rabin-Karp
algorithm.

For text of length n and p patterns of combined length m, its average and best case running time is O(n+m) in
space O(p), but its worst-case time is O(nm).

Section 40.3: Python Implementation of KMP algorithm
Haystack: The string in which given pattern needs to be searched.
Needle: The pattern to be searched.

Time complexity: Search portion (strstr method) has the complexity O(n) where n is the length of haystack but as
needle is also pre parsed for building prefix table O(m) is required for building prefix table where m is the length of
the needle.
Therefore, overall time complexity for KMP is O(n+m)
Space complexity: O(m) because of prefix table on needle.

Note: Following implementation returns the start position of match in haystack (if there is a match) else returns -1,
for edge cases like if needle/haystack is an empty string or needle is not found in haystack.

def get_prefix_table(needle):
 prefix_set = set()
 n = len(needle)
 prefix_table = [0]*n
 delimeter = 1
 while(delimeter<n):
 prefix_set.add(needle[:delimeter])
 j = 1
 while(j<delimeter+1):
 if needle[j:delimeter+1] in prefix_set:
 prefix_table[delimeter] = delimeter - j + 1
 break
 j += 1
 delimeter += 1
 return prefix_table

def strstr(haystack, needle):
 # m: denoting the position within S where the prospective match for W begins
 # i: denoting the index of the currently considered character in W.
 haystack_len = len(haystack)
 needle_len = len(needle)
 if (needle_len > haystack_len) or (not haystack_len) or (not needle_len):
 return -1
 prefix_table = get_prefix_table(needle)
 m = i = 0
 while((i<needle_len) and (m<haystack_len)):
 if haystack[m] == needle[i]:
 i += 1

Algorithms Notes for Professionals 180

 m += 1
 else:
 if i != 0:
 i = prefix_table[i-1]
 else:
 m += 1
 if i==needle_len and haystack[m-1] == needle[i-1]:
 return m - needle_len
 else:
 return -1

if __name__ == '__main__':
 needle = 'abcaby'
 haystack = 'abxabcabcaby'
 print strstr(haystack, needle)

Section 40.4: KMP Algorithm in C
Given a text txt and a pattern pat, the objective of this program will be to print all the occurance of pat in txt.

Examples:

Input:

 txt[] = "THIS IS A TEST TEXT"
 pat[] = "TEST"

output:

Pattern found at index 10

Input:

 txt[] = "AABAACAADAABAAABAA"
 pat[] = "AABA"

output:

 Pattern found at index 0
 Pattern found at index 9
 Pattern found at index 13

C Language Implementation:

// C program for implementation of KMP pattern searching
// algorithm
#include<stdio.h>
#include<string.h>
#include<stdlib.h>

void computeLPSArray(char *pat, int M, int *lps);

void KMPSearch(char *pat, char *txt)
{
 int M = strlen(pat);
 int N = strlen(txt);

 // create lps[] that will hold the longest prefix suffix

Algorithms Notes for Professionals 181

 // values for pattern
 int *lps = (int *)malloc(sizeof(int)*M);
 int j = 0; // index for pat[]

 // Preprocess the pattern (calculate lps[] array)
 computeLPSArray(pat, M, lps);

 int i = 0; // index for txt[]
 while (i < N)
 {
 if (pat[j] == txt[i])
 {
 j++;
 i++;
 }

 if (j == M)
 {
 printf("Found pattern at index %d \n", i-j);
 j = lps[j-1];
 }

 // mismatch after j matches
 else if (i < N && pat[j] != txt[i])
 {
 // Do not match lps[0..lps[j-1]] characters,
 // they will match anyway
 if (j != 0)
 j = lps[j-1];
 else
 i = i+1;
 }
 }
 free(lps); // to avoid memory leak
}

void computeLPSArray(char *pat, int M, int *lps)
{
 int len = 0; // length of the previous longest prefix suffix
 int i;

 lps[0] = 0; // lps[0] is always 0
 i = 1;

 // the loop calculates lps[i] for i = 1 to M-1
 while (i < M)
 {
 if (pat[i] == pat[len])
 {
 len++;
 lps[i] = len;
 i++;
 }
 else // (pat[i] != pat[len])
 {
 if (len != 0)
 {
 // This is tricky. Consider the example
 // AAACAAAA and i = 7.
 len = lps[len-1];

 // Also, note that we do not increment i here

Algorithms Notes for Professionals 182

 }
 else // if (len == 0)
 {
 lps[i] = 0;
 i++;
 }
 }
 }
}

// Driver program to test above function
int main()
{
 char *txt = "ABABDABACDABABCABAB";
 char *pat = "ABABCABAB";
 KMPSearch(pat, txt);
 return 0;
}

Output:

Found pattern at index 10

Reference:

http://www.geeksforgeeks.org/searching-for-patterns-set-2-kmp-algorithm/

http://www.geeksforgeeks.org/searching-for-patterns-set-2-kmp-algorithm/

Algorithms Notes for Professionals 183

Chapter 41: Breadth-First Search
Section 41.1: Finding the Shortest Path from Source to other
Nodes
Breadth-first-search (BFS) is an algorithm for traversing or searching tree or graph data structures. It starts at the
tree root (or some arbitrary node of a graph, sometimes referred to as a 'search key') and explores the neighbor
nodes first, before moving to the next level neighbors. BFS was invented in the late 1950s by Edward Forrest Moore,
who used it to find the shortest path out of a maze and discovered independently by C. Y. Lee as a wire routing
algorithm in 1961.

The processes of BFS algorithm works under these assumptions:

We won't traverse any node more than once.1.
Source node or the node that we're starting from is situated in level 0.2.
The nodes we can directly reach from source node are level 1 nodes, the nodes we can directly reach from3.
level 1 nodes are level 2 nodes and so on.
The level denotes the distance of the shortest path from the source.4.

Let's see an example:

Let's assume this graph represents connection between multiple cities, where each node denotes a city and an
edge between two nodes denote there is a road linking them. We want to go from node 1 to node 10. So node 1 is
our source, which is level 0. We mark node 1 as visited. We can go to node 2, node 3 and node 4 from here. So
they'll be level (0+1) = level 1 nodes. Now we'll mark them as visited and work with them.

https://en.wikipedia.org/wiki/Breadth-first_search
https://en.wikipedia.org/wiki/Edward_F._Moore
http://i.stack.imgur.com/LrC21.png

Algorithms Notes for Professionals 184

The colored nodes are visited. The nodes that we're currently working with will be marked with pink. We won't visit
the same node twice. From node 2, node 3 and node 4, we can go to node 6, node 7 and node 8. Let's mark them
as visited. The level of these nodes will be level (1+1) = level 2.

http://i.stack.imgur.com/Wwcte.png

Algorithms Notes for Professionals 185

If you haven't noticed, the level of nodes simply denote the shortest path distance from the source. For example:
we've found node 8 on level 2. So the distance from source to node 8 is 2.

We didn't yet reach our target node, that is node 10. So let's visit the next nodes. we can directly go to from node 6,
node 7 and node 8.

http://i.stack.imgur.com/Ns886.png

Algorithms Notes for Professionals 186

We can see that, we found node 10 at level 3. So the shortest path from source to node 10 is 3. We searched the
graph level by level and found the shortest path. Now let's erase the edges that we didn't use:

http://i.stack.imgur.com/XdE7c.png

Algorithms Notes for Professionals 187

After removing the edges that we didn't use, we get a tree called BFS tree. This tree shows the shortest path from
source to all other nodes.

So our task will be, to go from source to level 1 nodes. Then from level 1 to level 2 nodes and so on until we reach
our destination. We can use queue to store the nodes that we are going to process. That is, for each node we're
going to work with, we'll push all other nodes that can be directly traversed and not yet traversed in the queue.

The simulation of our example:

First we push the source in the queue. Our queue will look like:

 front
+-----+
| 1 |
+-----+

The level of node 1 will be 0. level[1] = 0. Now we start our BFS. At first, we pop a node from our queue. We get
node 1. We can go to node 4, node 3 and node 2 from this one. We've reached these nodes from node 1. So
level[4] = level[3] = level[2] = level[1] + 1 = 1. Now we mark them as visited and push them in the queue.

 front
+-----+ +-----+ +-----+
| 2 | | 3 | | 4 |
+-----+ +-----+ +-----+

http://i.stack.imgur.com/AaVRF.png

Algorithms Notes for Professionals 188

Now we pop node 4 and work with it. We can go to node 7 from node 4. level[7] = level[4] + 1 = 2. We mark node 7
as visited and push it in the queue.

 front
+-----+ +-----+ +-----+
| 7 | | 2 | | 3 |
+-----+ +-----+ +-----+

From node 3, we can go to node 7 and node 8. Since we've already marked node 7 as visited, we mark node 8 as
visited, we change level[8] = level[3] + 1 = 2. We push node 8 in the queue.

 front
+-----+ +-----+ +-----+
| 6 | | 7 | | 2 |
+-----+ +-----+ +-----+

This process will continue till we reach our destination or the queue becomes empty. The level array will provide us
with the distance of the shortest path from source. We can initialize level array with infinity value, which will mark
that the nodes are not yet visited. Our pseudo-code will be:

Procedure BFS(Graph, source):
Q = queue();
level[] = infinity
level[source] := 0
Q.push(source)
while Q is not empty
 u -> Q.pop()
 for all edges from u to v in Adjacency list
 if level[v] == infinity
 level[v] := level[u] + 1
 Q.push(v)
 end if
 end for
end while
Return level

By iterating through the level array, we can find out the distance of each node from source. For example: the
distance of node 10 from source will be stored in level[10].

Sometimes we might need to print not only the shortest distance, but also the path via which we can go to our
destined node from the source. For this we need to keep a parent array. parent[source] will be NULL. For each
update in level array, we'll simply add parent[v] := u in our pseudo code inside the for loop. After finishing BFS,
to find the path, we'll traverse back the parent array until we reach source which will be denoted by NULL value.
The pseudo-code will be:

Procedure PrintPath(u): //recursive | Procedure PrintPath(u): //iterative
if parent[u] is not equal to null | S = Stack()
 PrintPath(parent[u]) | while parent[u] is not equal to null
end if | S.push(u)
print -> u | u := parent[u]
 | end while
 | while S is not empty
 | print -> S.pop
 | end while

Algorithms Notes for Professionals 189

Complexity:

We've visited every node once and every edges once. So the complexity will be O(V + E) where V is the number of
nodes and E is the number of edges.

Section 41.2: Finding Shortest Path from Source in a 2D graph
Most of the time, we'll need to find out the shortest path from single source to all other nodes or a specific node in
a 2D graph. Say for example: we want to find out how many moves are required for a knight to reach a certain
square in a chessboard, or we have an array where some cells are blocked, we have to find out the shortest path
from one cell to another. We can move only horizontally and vertically. Even diagonal moves can be possible too.
For these cases, we can convert the squares or cells in nodes and solve these problems easily using BFS. Now our
visited, parent and level will be 2D arrays. For each node, we'll consider all possible moves. To find the distance to
a specific node, we'll also check whether we have reached our destination.

There will be one additional thing called direction array. This will simply store the all possible combinations of
directions we can go to. Let's say, for horizontal and vertical moves, our direction arrays will be:

+----+-----+-----+-----+-----+
| dx | 1 | -1 | 0 | 0 |
+----+-----+-----+-----+-----+
| dy | 0 | 0 | 1 | -1 |
+----+-----+-----+-----+-----+

Here dx represents move in x-axis and dy represents move in y-axis. Again this part is optional. You can also write
all the possible combinations separately. But it's easier to handle it using direction array. There can be more and
even different combinations for diagonal moves or knight moves.

The additional part we need to keep in mind is:

If any of the cell is blocked, for every possible moves, we'll check if the cell is blocked or not.
We'll also check if we have gone out of bounds, that is we've crossed the array boundaries.
The number of rows and columns will be given.

Our pseudo-code will be:

Procedure BFS2D(Graph, blocksign, row, column):
for i from 1 to row
 for j from 1 to column
 visited[i][j] := false
 end for
end for
visited[source.x][source.y] := true
level[source.x][source.y] := 0
Q = queue()
Q.push(source)
m := dx.size
while Q is not empty
 top := Q.pop
 for i from 1 to m
 temp.x := top.x + dx[i]
 temp.y := top.y + dy[i]
 if temp is inside the row and column and top doesn't equal to blocksign
 visited[temp.x][temp.y] := true
 level[temp.x][temp.y] := level[top.x][top.y] + 1
 Q.push(temp)

Algorithms Notes for Professionals 190

 end if
 end for
end while
Return level

As we have discussed earlier, BFS only works for unweighted graphs. For weighted graphs, we'll need Dijkstra's
algorithm. For negative edge cycles, we need Bellman-Ford's algorithm. Again this algorithm is single source
shortest path algorithm. If we need to find out distance from each nodes to all other nodes, we'll need Floyd-
Warshall's algorithm.

Section 41.3: Connected Components Of Undirected Graph
Using BFS
BFS can be used to find the connected components of an undirected graph. We can also find if the given graph is
connected or not. Our subsequent discussion assumes we are dealing with undirected graphs.The definition of a
connected graph is:

A graph is connected if there is a path between every pair of vertices.

Following is a connected graph.

Following graph is not connected and has 2 connected components:

Connected Component 1: {a,b,c,d,e}1.
Connected Component 2: {f}2.

http://mathinsight.org/definition/undirected_graph
https://i.stack.imgur.com/qeDii.png

Algorithms Notes for Professionals 191

BFS is a graph traversal algorithm. So starting from a random source node, if on termination of algorithm, all nodes
are visited, then the graph is connected,otherwise it is not connected.

PseudoCode for the algorithm.

boolean isConnected(Graph g)
{
 BFS(v)//v is a random source node.
 if(allVisited(g))
 {
 return true;
 }
 else return false;
}

C implementation for finding the whether an undirected graph is connected or not:

#include<stdio.h>
#include<stdlib.h>
#define MAXVERTICES 100

void enqueue(int);
int deque();
int isConnected(char **graph,int noOfVertices);
void BFS(char **graph,int vertex,int noOfVertices);
int count = 0;
//Queue node depicts a single Queue element
//It is NOT a graph node.
struct node
{
 int v;
 struct node *next;
};

typedef struct node Node;
typedef struct node *Nodeptr;

Nodeptr Qfront = NULL;
Nodeptr Qrear = NULL;
char *visited;//array that keeps track of visited vertices.

int main()

https://i.stack.imgur.com/gbTR8.png

Algorithms Notes for Professionals 192

{
 int n,e;//n is number of vertices, e is number of edges.
 int i,j;
 char **graph;//adjacency matrix

 printf("Enter number of vertices:");
 scanf("%d",&n);

 if(n < 0 || n > MAXVERTICES)
 {
 fprintf(stderr, "Please enter a valid positive integer from 1 to %d",MAXVERTICES);
 return -1;
 }

 graph = malloc(n * sizeof(char *));
 visited = malloc(n*sizeof(char));

 for(i = 0;i < n;++i)
 {
 graph[i] = malloc(n*sizeof(int));
 visited[i] = 'N';//initially all vertices are not visited.
 for(j = 0;j < n;++j)
 graph[i][j] = 0;
 }

 printf("enter number of edges and then enter them in pairs:");
 scanf("%d",&e);

 for(i = 0;i < e;++i)
 {
 int u,v;
 scanf("%d%d",&u,&v);
 graph[u-1][v-1] = 1;
 graph[v-1][u-1] = 1;
 }

 if(isConnected(graph,n))
 printf("The graph is connected");
 else printf("The graph is NOT connected\n");
}

void enqueue(int vertex)
{
 if(Qfront == NULL)
 {
 Qfront = malloc(sizeof(Node));
 Qfront->v = vertex;
 Qfront->next = NULL;
 Qrear = Qfront;
 }
 else
 {
 Nodeptr newNode = malloc(sizeof(Node));
 newNode->v = vertex;
 newNode->next = NULL;
 Qrear->next = newNode;
 Qrear = newNode;
 }
}

int deque()
{

Algorithms Notes for Professionals 193

 if(Qfront == NULL)
 {
 printf("Q is empty , returning -1\n");
 return -1;
 }
 else
 {
 int v = Qfront->v;
 Nodeptr temp= Qfront;
 if(Qfront == Qrear)
 {
 Qfront = Qfront->next;
 Qrear = NULL;
 }
 else
 Qfront = Qfront->next;

 free(temp);
 return v;
 }
}

int isConnected(char **graph,int noOfVertices)
{
 int i;

 //let random source vertex be vertex 0;
 BFS(graph,0,noOfVertices);

 for(i = 0;i < noOfVertices;++i)
 if(visited[i] == 'N')
 return 0;//0 implies false;

 return 1;//1 implies true;
}

void BFS(char **graph,int v,int noOfVertices)
{
 int i,vertex;
 visited[v] = 'Y';
 enqueue(v);
 while((vertex = deque()) != -1)
 {
 for(i = 0;i < noOfVertices;++i)
 if(graph[vertex][i] == 1 && visited[i] == 'N')
 {
 enqueue(i);
 visited[i] = 'Y';
 }
 }
}

For Finding all the Connected components of an undirected graph, we only need to add 2 lines of code to the BFS
function. The idea is to call BFS function until all vertices are visited.

The lines to be added are:

printf("\nConnected component %d\n",++count);
//count is a global variable initialized to 0
//add this as first line to BFS function

Algorithms Notes for Professionals 194

AND

printf("%d ",vertex+1);
add this as first line of while loop in BFS

and we define the following function:

void listConnectedComponents(char **graph,int noOfVertices)
{
 int i;
 for(i = 0;i < noOfVertices;++i)
 {
 if(visited[i] == 'N')
 BFS(graph,i,noOfVertices);

 }
}

Algorithms Notes for Professionals 195

Chapter 42: Depth First Search
Section 42.1: Introduction To Depth-First Search
Depth-first search is an algorithm for traversing or searching tree or graph data structures. One starts at the root
and explores as far as possible along each branch before backtracking. A version of depth-first search was
investigated in the 19th century French mathematician Charles Pierre Trémaux as a strategy for solving mazes.

Depth-first search is a systematic way to find all the vertices reachable from a source vertex. Like breadth-first
search, DFS traverse a connected component of a given graph and defines a spanning tree. The basic idea of depth-
first search is methodically exploring every edge. We start over from a different vertices as necessary. As soon as
we discover a vertex, DFS starts exploring from it (unlike BFS, which puts a vertex on a queue so that it explores
from it later).

Let's look at an example. We'll traverse this graph:

We'll traverse the graph following these rules:

We'll start from the source.
No node will be visited twice.
The nodes we didn't visit yet, will be colored white.
The node we visited, but didn't visit all of its child nodes, will be colored grey.
Completely traversed nodes will be colored black.

Let's look at it step by step:

https://en.wikipedia.org/wiki/Depth-first_search
http://i.stack.imgur.com/JJkTC.png

Algorithms Notes for Professionals 196

http://i.stack.imgur.com/AI6W0.png
http://i.stack.imgur.com/f3T4C.png

Algorithms Notes for Professionals 197

http://i.stack.imgur.com/MXRDH.png
http://i.stack.imgur.com/Piasa.png

Algorithms Notes for Professionals 198

We can see one important keyword. That is backedge. You can see. 5-1 is called backedge. This is because, we're
not yet done with node-1, so going from another node to node-1 means there's a cycle in the graph. In DFS, if we
can go from one gray node to another, we can be certain that the graph has a cycle. This is one of the ways of
detecting cycle in a graph. Depending on source node and the order of the nodes we visit, we can find out any edge
in a cycle as backedge. For example: if we went to 5 from 1 first, we'd have found out 2-1 as backedge.

The edge that we take to go from gray node to white node are called tree edge. If we only keep the tree edge's and
remove others, we'll get DFS tree.

In undirected graph, if we can visit a already visited node, that must be a backedge. But for directed graphs, we
must check the colors. If and only if we can go from one gray node to another gray node, that is called a backedge.

In DFS, we can also keep timestamps for each node, which can be used in many ways (e.g.: Topological Sort).

When a node v is changed from white to gray the time is recorded in d[v].1.

http://i.stack.imgur.com/RJ76g.png
http://i.stack.imgur.com/4W5Bz.png

Algorithms Notes for Professionals 199

When a node v is changed from gray to black the time is recorded in f[v].2.

Here d[] means discovery time and f[] means finishing time. Our pesudo-code will look like:

Procedure DFS(G):
for each node u in V[G]
 color[u] := white
 parent[u] := NULL
end for
time := 0
for each node u in V[G]
 if color[u] == white
 DFS-Visit(u)
 end if
end for

Procedure DFS-Visit(u):
color[u] := gray
time := time + 1
d[u] := time
for each node v adjacent to u
 if color[v] == white
 parent[v] := u
 DFS-Visit(v)
 end if
end for
color[u] := black
time := time + 1
f[u] := time

Complexity:

Each nodes and edges are visited once. So the complexity of DFS is O(V+E), where V denotes the number of nodes
and E denotes the number of edges.

Applications of Depth First Search:

Finding all pair shortest path in an undirected graph.
Detecting cycle in a graph.
Path finding.
Topological Sort.
Testing if a graph is bipartite.
Finding Strongly Connected Component.
Solving puzzles with one solution.

Algorithms Notes for Professionals 200

Chapter 43: Hash Functions
Section 43.1: Hash codes for common types in C#
The hash codes produced by GetHashCode() method for built-in and common C# types from the System
namespace are shown below.

Boolean

1 if value is true, 0 otherwise.

Byte, UInt16, Int32, UInt32, Single

Value (if necessary casted to Int32).

SByte
((int)m_value ^ (int)m_value << 8);

Char
(int)m_value ^ ((int)m_value << 16);

Int16
((int)((ushort)m_value) ^ (((int)m_value) << 16));

Int64, Double

Xor between lower and upper 32 bits of 64 bit number

(unchecked((int)((long)m_value)) ^ (int)(m_value >> 32));

UInt64, DateTime, TimeSpan
((int)m_value) ^ (int)(m_value >> 32);

Decimal
((((int *)&dbl)[0]) & 0xFFFFFFF0) ^ ((int *)&dbl)[1];

Object
RuntimeHelpers.GetHashCode(this);

The default implementation is used sync block index.

String

Hash code computation depends on the platform type (Win32 or Win64), feature of using randomized string
hashing, Debug / Release mode. In case of Win64 platform:

int hash1 = 5381;
int hash2 = hash1;
int c;
char *s = src;
while ((c = s[0]) != 0) {
 hash1 = ((hash1 << 5) + hash1) ^ c;
 c = s[1];
 if (c == 0)
 break;
 hash2 = ((hash2 << 5) + hash2) ^ c;
 s += 2;
}

https://msdn.microsoft.com/en-us/library/ya5y69ds.aspx
https://github.com/dotnet/coreclr/blob/release/1.1.0/src/mscorlib/src/System/Boolean.cs#L75
https://github.com/dotnet/coreclr/blob/release/1.1.0/src/mscorlib/src/System/Byte.cs#L76
https://github.com/dotnet/coreclr/blob/release/1.1.0/src/mscorlib/src/System/UInt16.cs#L66
https://github.com/dotnet/coreclr/blob/release/1.1.0/src/mscorlib/src/System/Int32.cs#L76
https://github.com/dotnet/coreclr/blob/release/1.1.0/src/mscorlib/src/System/UInt32.cs#L77
https://github.com/dotnet/coreclr/blob/release/1.1.0/src/mscorlib/src/System/Single.cs#L159
https://github.com/dotnet/coreclr/blob/release/1.1.0/src/mscorlib/src/System/SByte.cs#L70
https://github.com/dotnet/coreclr/blob/release/1.1.0/src/mscorlib/src/System/Char.cs#L102
https://github.com/dotnet/coreclr/blob/release/1.1.0/src/mscorlib/src/System/Int16.cs#L69
https://github.com/dotnet/coreclr/blob/release/1.1.0/src/mscorlib/src/System/Int64.cs#L75
https://github.com/dotnet/coreclr/blob/release/1.1.0/src/mscorlib/src/System/Double.cs#L191
https://github.com/dotnet/coreclr/blob/release/1.1.0/src/mscorlib/src/System/UInt64.cs#L74
https://github.com/dotnet/coreclr/blob/release/1.1.0/src/mscorlib/src/System/DateTime.cs#L824
https://github.com/dotnet/coreclr/blob/release/1.1.0/src/mscorlib/src/System/TimeSpan.cs#L215
https://github.com/dotnet/coreclr/blob/release/1.1.0/src/classlibnative/bcltype/decimal.cpp#L102
https://github.com/dotnet/coreclr/blob/release/1.1.0/src/mscorlib/src/System/Object.cs#L92
https://github.com/dotnet/coreclr/blob/release/1.1.0/src/classlibnative/bcltype/objectnative.cpp#L103
https://github.com/dotnet/coreclr/blob/release/1.1.0/src/mscorlib/src/System/String.Comparison.cs#L1003

Algorithms Notes for Professionals 201

return hash1 + (hash2 * 1566083941);

ValueType

The first non-static field is look for and get it's hashcode. If the type has no non-static fields, the hashcode of the
type returns. The hashcode of a static member can't be taken because if that member is of the same type as the
original type, the calculating ends up in an infinite loop.

Nullable<T>
return hasValue ? value.GetHashCode() : 0;

Array
int ret = 0;
for (int i = (Length >= 8 ? Length - 8 : 0); i < Length; i++)
{
 ret = ((ret << 5) + ret) ^ comparer.GetHashCode(GetValue(i));
}

References

GitHub .Net Core CLR

Section 43.2: Introduction to hash functions
Hash function h() is an arbitrary function which mapped data x ? X of arbitrary size to value y ? Y of fixed size: y
= h(x). Good hash functions have follows restrictions:

hash functions behave likes uniform distribution

hash functions is deterministic. h(x) should always return the same value for a given x

fast calculating (has runtime O(1))

In general case size of hash function less then size of input data: |y| < |x|. Hash functions are not reversible or in
other words it may be collision: ? x1, x2 ? X, x1 ? x2: h(x1) = h(x2). X may be finite or infinite set and Y is
finite set.

Hash functions are used in a lot of parts of computer science, for example in software engineering, cryptography,
databases, networks, machine learning and so on. There are many different types of hash functions, with differing
domain specific properties.

Often hash is an integer value. There are special methods in programmning languages for hash calculating. For
example, in C# GetHashCode() method for all types returns Int32 value (32 bit integer number). In Java every class
provides hashCode() method which return int. Each data type has own or user defined implementations.

Hash methods

There are several approaches for determinig hash function. Without loss of generality, lets x ? X = {z ? ?: z ?
0} are positive integer numbers. Often m is prime (not too close to an exact power of 2).

Method Hash function
Division method h(x) = x mod m
Multiplication method h(x) = ?m (xA mod 1)?, A ? {z ? ?: 0 < z < 1}

Hash table

Hash functions used in hash tables for computing index into an array of slots. Hash table is data structure for
implementing dictionaries (key-value structure). Good implemented hash tables have O(1) time for the next

https://github.com/dotnet/coreclr/blob/release/1.1.0/src/mscorlib/src/System/ValueType.cs#L83
https://github.com/dotnet/coreclr/blob/release/1.1.0/src/mscorlib/src/System/Nullable.cs#L69
https://github.com/dotnet/coreclr/blob/release/1.1.0/src/mscorlib/src/System/Array.cs#L800
https://github.com/dotnet/coreclr

Algorithms Notes for Professionals 202

operations: insert, search and delete data by key. More than one keys may hash to the same slot. There are two
ways for resolving collision:

Chaining: linked list is used for storing elements with the same hash value in slot1.

Open addressing: zero or one element is stored in each slot2.

The next methods are used to compute the probe sequences required for open addressing

Method Formula
Linear probing h(x, i) = (h'(x) + i) mod m
Quadratic probing h(x, i) = (h'(x) + c1*i + c2*i^2) mod m
Double hashing h(x, i) = (h1(x) + i*h2(x)) mod m

Where i ? {0, 1, ..., m-1}, h'(x), h1(x), h2(x) are auxiliary hash functions, c1, c2 are positive auxiliary
constants.

Examples

Lets x ? U{1, 1000}, h = x mod m. The next table shows the hash values in case of not prime and prime. Bolded
text indicates the same hash values.

x m = 100 (not prime) m = 101 (prime)
723 23 16
103 3 2
738 38 31
292 92 90
61 61 61
87 87 87
995 95 86
549 49 44
991 91 82
757 57 50
920 20 11
626 26 20
557 57 52
831 31 23
619 19 13
Links

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein. Introduction to Algorithms.

Overview of Hash Tables

Wolfram MathWorld - Hash Function

https://courses.csail.mit.edu/6.006/spring11/rec/rec05.pdf
http://mathworld.wolfram.com/HashFunction.html

Algorithms Notes for Professionals 203

Chapter 44: Travelling Salesman
Section 44.1: Brute Force Algorithm
A path through every vertex exactly once is the same as ordering the vertex in some way. Thus, to calculate the
minimum cost of travelling through every vertex exactly once, we can brute force every single one of the N!
permutations of the numbers from 1 to N.

Psuedocode

minimum = INF
for all permutations P

 current = 0

 for i from 0 to N-2
 current = current + cost[P[i]][P[i+1]] <- Add the cost of going from 1 vertex to the next

 current = current + cost[P[N-1]][P[0]] <- Add the cost of going from last vertex to the
first

 if current < minimum <- Update minimum if necessary
 minimum = current

output minimum

Time Complexity

There are N! permutations to go through and the cost of each path is calculated in O(N), thus this algorithm takes
O(N * N!) time to output the exact answer.

Section 44.2: Dynamic Programming Algorithm
Notice that if we consider the path (in order):

(1,2,3,4,6,0,5,7)

and the path

(1,2,3,5,0,6,7,4)

The cost of going from vertex 1 to vertex 2 to vertex 3 remains the same, so why must it be recalculated? This result
can be saved for later use.

Let dp[bitmask][vertex] represent the minimum cost of travelling through all the vertices whose corresponding
bit in bitmask is set to 1 ending at vertex. For example:

dp[12][2]

 12 = 1 1 0 0
 ^ ^
vertices: 3 2 1 0

Since 12 represents 1100 in binary, dp[12][2] represents going through vertices 2 and 3 in the graph with the path
ending at vertex 2.

Algorithms Notes for Professionals 204

Thus we can have the following algorithm (C++ implementation):

int cost[N][N]; //Adjust the value of N if needed
int memo[1 << N][N]; //Set everything here to -1
int TSP(int bitmask, int pos){
 int cost = INF;
 if (bitmask == ((1 << N) - 1)){ //All vertices have been explored
 return cost[pos][0]; //Cost to go back
 }
 if (memo[bitmask][pos] != -1){ //If this has already been computed
 return memo[bitmask][pos]; //Just return the value, no need to recompute
 }
 for (int i = 0; i < N; ++i){ //For every vertex
 if ((bitmask & (1 << i)) == 0){ //If the vertex has not been visited
 cost = min(cost,TSP(bitmask | (1 << i) , i) + cost[pos][i]); //Visit the vertex
 }
 }
 memo[bitmask][pos] = cost; //Save the result
 return cost;
}
//Call TSP(1,0)

This line may be a little confusing, so lets go through it slowly:

cost = min(cost,TSP(bitmask | (1 << i) , i) + cost[pos][i]);

Here, bitmask | (1 << i) sets the ith bit of bitmask to 1, which represents that the ith vertex has been visited. The
i after the comma represents the new pos in that function call, which represents the new "last" vertex.
cost[pos][i] is to add the cost of travelling from vertex pos to vertex i.

Thus, this line is to update the value of cost to the minimum possible value of travelling to every other vertex that
has not been visited yet.

Time Complexity

The function TSP(bitmask,pos) has 2^N values for bitmask and N values for pos. Each function takes O(N) time to
run (the for loop). Thus this implementation takes O(N^2 * 2^N) time to output the exact answer.

Algorithms Notes for Professionals 205

Chapter 45: Knapsack Problem
Section 45.1: Knapsack Problem Basics
The Problem: Given a set of items where each item contains a weight and value, determine the number of each to
include in a collection so that the total weight is less than or equal to a given limit and the total value is as large as
possible.

Pseudo code for Knapsack Problem

Given:

Values(array v)1.
Weights(array w)2.
Number of distinct items(n)3.
Capacity(W)4.

for j from 0 to W do:
 m[0, j] := 0
for i from 1 to n do:
 for j from 0 to W do:
 if w[i] > j then:
 m[i, j] := m[i-1, j]
 else:
 m[i, j] := max(m[i-1, j], m[i-1, j-w[i]] + v[i])

A simple implementation of the above pseudo code using Python:

def knapSack(W, wt, val, n):
 K = [[0 for x in range(W+1)] for x in range(n+1)]
 for i in range(n+1):
 for w in range(W+1):
 if i==0 or w==0:
 K[i][w] = 0
 elif wt[i-1] <= w:
 K[i][w] = max(val[i-1] + K[i-1][w-wt[i-1]], K[i-1][w])
 else:
 K[i][w] = K[i-1][w]
 return K[n][W]
val = [60, 100, 120]
wt = [10, 20, 30]
W = 50
n = len(val)
print(knapSack(W, wt, val, n))

Running the code: Save this in a file named knapSack.py

$ python knapSack.py
220

Time Complexity of the above code: O(nW) where n is the number of items and W is the capacity of knapsack.

Section 45.2: Solution Implemented in C#
public class KnapsackProblem
{

https://en.wikipedia.org/wiki/Knapsack_problem

Algorithms Notes for Professionals 206

 private static int Knapsack(int w, int[] weight, int[] value, int n)
 {
 int i;
 int[,] k = new int[n + 1, w + 1];
 for (i = 0; i <= n; i++)
 {
 int b;
 for (b = 0; b <= w; b++)
 {
 if (i==0 || b==0)
 {
 k[i, b] = 0;
 }
 else if (weight[i - 1] <= b)
 {
 k[i, b] = Math.Max(value[i - 1] + k[i - 1, b - weight[i - 1]], k[i - 1, b]);
 }
 else
 {
 k[i, b] = k[i - 1, b];
 }
 }
 }
 return k[n, w];
 }

 public static int Main(int nItems, int[] weights, int[] values)
 {
 int n = values.Length;
 return Knapsack(nItems, weights, values, n);
 }
}

Algorithms Notes for Professionals 207

Chapter 46: Matrix Exponentiation
Section 46.1: Matrix Exponentiation to Solve Example
Problems
Find f(n): nth Fibonacci number. The problem is quite easy when n is relatively small. We can use simple recursion,
f(n) = f(n-1) + f(n-2), or we can use dynamic programming approach to avoid the calculation of same function
over and over again. But what will you do if the problem says, Given 0 < n < 10?, find f(n) mod 999983? Dynamic
programming will fail, so how do we tackle this problem?

First let's see how matrix exponentiation can help to represent recursive relation.

Prerequisites:

Given two matrices, know how to find their product. Further, given the product matrix of two matrices, and
one of them, know how to find the other matrix.
Given a matrix of size d X d, know how to find its nth power in O(d3log(n)).

Patterns:

At first we need a recursive relation and we want to find a matrix M which can lead us to the desired state from a
set of already known states. Let's assume that, we know the k states of a given recurrence relation and we want to
find the (k+1)th state. Let M be a k X k matrix, and we build a matrix A:[k X 1] from the known states of the
recurrence relation, now we want to get a matrix B:[k X 1] which will represent the set of next states, i. e. M X A = B
as shown below:

 | f(n) | | f(n+1) |
 | f(n-1) | | f(n) |
 M X | f(n-2) | = | f(n-1) |
 | | | |
 | f(n-k) | |f(n-k+1)|

So, if we can design M accordingly, our job will be done! The matrix will then be used to represent the recurrence
relation.

Type 1:
Let's start with the simplest one, f(n) = f(n-1) + f(n-2)
We get, f(n+1) = f(n) + f(n-1).
Let's assume, we know f(n) and f(n-1); We want to find out f(n+1).
From the situation stated above, matrix A and matrix B can be formed as shown below:

 Matrix A Matrix B

| f(n) | | f(n+1) |
| f(n-1) | | f(n) |

[Note: Matrix A will be always designed in such a way that, every state on which f(n+1) depends, will be present]
Now, we need to design a 2X2 matrix M such that, it satisfies M X A = B as stated above.
The first element of B is f(n+1) which is actually f(n) + f(n-1). To get this, from matrix A, we need, 1 X f(n) and 1
X f(n-1). So the first row of M will be [1 1].

| 1 1 | X | f(n) | = | f(n+1) |
| ----- | | f(n-1) | | ------ |

Algorithms Notes for Professionals 208

[Note: ----- means we are not concerned about this value.]
Similarly, 2nd item of B is f(n) which can be got by simply taking 1 X f(n) from A, so the 2nd row of M is [1 0].

| ----- | X | f(n) | = | ------ |
| 1 0 | | f(n-1) | | f(n) |

Then we get our desired 2 X 2 matrix M.

| 1 1 | X | f(n) | = | f(n+1) |
| 1 0 | | f(n-1) | | f(n) |

These matrices are simply derived using matrix multiplication.

Type 2:

Let's make it a little complex: find f(n) = a X f(n-1) + b X f(n-2), where a and b are constants.
This tells us, f(n+1) = a X f(n) + b X f(n-1).
By this far, this should be clear that the dimension of the matrices will be equal to the number of dependencies, i.e.
in this particular example, again 2. So for A and B, we can build two matrices of size 2 X 1:

Matrix A Matrix B
| f(n) | | f(n+1) |
| f(n-1) | | f(n) |

Now for f(n+1) = a X f(n) + b X f(n-1), we need [a, b] in the first row of objective matrix M. And for the 2nd
item in B, i.e. f(n) we already have that in matrix A, so we just take that, which leads, the 2nd row of the matrix M
to [1 0]. This time we get:

| a b | X | f(n) | = | f(n+1) |
| 1 0 | | f(n-1) | | f(n) |

Pretty simple, eh?

Type 3:

If you've survived through to this stage, you've grown much older, now let's face a bit complex relation: find f(n) =
a X f(n-1) + c X f(n-3)?
Ooops! A few minutes ago, all we saw were contiguous states, but here, the state f(n-2) is missing. Now?

Actually this is not a problem anymore, we can convert the relation as follows: f(n) = a X f(n-1) + 0 X f(n-2) +
c X f(n-3), deducing f(n+1) = a X f(n) + 0 X f(n-1) + c X f(n-2). Now, we see that, this is actually a form
described in Type 2. So here the objective matrix M will be 3 X 3, and the elements are:

a 0 c		f(n)		f(n+1)
1 0 0	X	f(n-1)	=	f(n)
0 1 0		f(n-2)		f(n-1)

These are calculated in the same way as type 2, if you find it difficult, try it on pen and paper.

Type 4:

Life is getting complex as hell, and Mr, Problem now asks you to find f(n) = f(n-1) + f(n-2) + c where c is any
constant.
Now this is a new one and all we have seen in past, after the multiplication, each state in A transforms to its next

Algorithms Notes for Professionals 209

state in B.

f(n) = f(n-1) + f(n-2) + c
f(n+1) = f(n) + f(n-1) + c
f(n+2) = f(n+1) + f(n) + c
.................... so on

So , normally we can't get it through previous fashion, but how about we add c as a state:

 | f(n) | | f(n+1) |
 M X | f(n-1) | = | f(n) |
 | c | | c |

Now, its not much hard to design M. Here's how its done, but don't forget to verify:

1 1 1		f(n)		f(n+1)
1 0 0	X	f(n-1)	=	f(n)
0 0 1		c		c

Type 5:

Let's put it altogether: find f(n) = a X f(n-1) + c X f(n-3) + d X f(n-4) + e. Let's leave it as an exercise for
you. First try to find out the states and matrix M. And check if it matches with your solution. Also find matrix A and
B.

| a 0 c d 1 |
| 1 0 0 0 0 |
| 0 1 0 0 0 |
| 0 0 1 0 0 |
| 0 0 0 0 1 |

Type 6:

Sometimes the recurrence is given like this:

f(n) = f(n-1) -> if n is odd
f(n) = f(n-2) -> if n is even

In short:

f(n) = (n&1) X f(n-1) + (!(n&1)) X f(n-2)

Here, we can split the functions in the basis of odd even and keep 2 different matrix for both of them and calculate
them separately.

Type 7:

Feeling little too confident? Good for you. Sometimes we may need to maintain more than one recurrence, where
they are interested. For example, let a recurrence re;atopm be:

g(n) = 2g(n-1) + 2g(n-2) + f(n)

Here, recurrence g(n) is dependent upon f(n) and this can be calculated in the same matrix but of increased
dimensions. From these let's at first design the matrices A and B.

Algorithms Notes for Professionals 210

 Matrix A Matrix B
g(n)		g(n+1)
g(n-1)		g(n)
f(n+1)		f(n+2)
f(n)		f(n+1)

Here, g(n+1) = 2g(n-1) + f(n+1) and f(n+2) = 2f(n+1) + 2f(n). Now, using the processes stated above, we
can find the objective matrix M to be:

| 2 2 1 0 |
| 1 0 0 0 |
| 0 0 2 2 |
| 0 0 1 0 |

So, these are the basic categories of recurrence relations which are used to solveby this simple technique.

Algorithms Notes for Professionals 211

Chapter 47: Equation Solving
Section 47.1: Linear Equation
There are two classes of methods for solving Linear Equations:

Direct Methods: Common characteristics of direct methods are that they transform the original equation1.
into equivalent equations that can be solved more easily, means we get solve directly from an equation.

Iterative Method: Iterative or Indirect Methods, start with a guess of the solution and then repeatedly refine2.
the solution until a certain convergence criterion is reached. Iterative methods are generally less efficient
than direct methods because large number of operations required. Example- Jacobi's Iteration Method,
Gauss-Seidal Iteration Method.

Implementation in C-

//Implementation of Jacobi's Method
void JacobisMethod(int n, double x[n], double b[n], double a[n][n]){
 double Nx[n]; //modified form of variables
 int rootFound=0; //flag

 int i, j;
 while(!rootFound){
 for(i=0; i<n; i++){ //calculation
 Nx[i]=b[i];

 for(j=0; j<n; j++){
 if(i!=j) Nx[i] = Nx[i]-a[i][j]*x[j];
 }
 Nx[i] = Nx[i] / a[i][i];
 }

 rootFound=1; //verification
 for(i=0; i<n; i++){
 if(!((Nx[i]-x[i])/x[i] > -0.000001 && (Nx[i]-x[i])/x[i] < 0.000001)){
 rootFound=0;
 break;
 }
 }

 for(i=0; i<n; i++){ //evaluation
 x[i]=Nx[i];
 }
 }

 return ;
}

//Implementation of Gauss-Seidal Method
void GaussSeidalMethod(int n, double x[n], double b[n], double a[n][n]){
 double Nx[n]; //modified form of variables
 int rootFound=0; //flag

 int i, j;
 for(i=0; i<n; i++){ //initialization
 Nx[i]=x[i];
 }

Algorithms Notes for Professionals 212

 while(!rootFound){
 for(i=0; i<n; i++){ //calculation
 Nx[i]=b[i];

 for(j=0; j<n; j++){
 if(i!=j) Nx[i] = Nx[i]-a[i][j]*Nx[j];
 }
 Nx[i] = Nx[i] / a[i][i];
 }

 rootFound=1; //verification
 for(i=0; i<n; i++){
 if(!((Nx[i]-x[i])/x[i] > -0.000001 && (Nx[i]-x[i])/x[i] < 0.000001)){
 rootFound=0;
 break;
 }
 }

 for(i=0; i<n; i++){ //evaluation
 x[i]=Nx[i];
 }
 }

 return ;
}

//Print array with comma separation
void print(int n, double x[n]){
 int i;
 for(i=0; i<n; i++){
 printf("%lf, ", x[i]);
 }
 printf("\n\n");

 return ;
}

int main(){
 //equation initialization
 int n=3; //number of variables

 double x[n]; //variables

 double b[n], //constants
 a[n][n]; //arguments

 //assign values
 a[0][0]=8; a[0][1]=2; a[0][2]=-2; b[0]=8; //8x?+2x?-2x?+8=0
 a[1][0]=1; a[1][1]=-8; a[1][2]=3; b[1]=-4; //x?-8x?+3x?-4=0
 a[2][0]=2; a[2][1]=1; a[2][2]=9; b[2]=12; //2x?+x?+9x?+12=0

 int i;

 for(i=0; i<n; i++){ //initialization
 x[i]=0;
 }
 JacobisMethod(n, x, b, a);
 print(n, x);

 for(i=0; i<n; i++){ //initialization

Algorithms Notes for Professionals 213

 x[i]=0;
 }
 GaussSeidalMethod(n, x, b, a);
 print(n, x);

 return 0;
}

Section 47.2: Non-Linear Equation
An equation of the type f(x)=0 is either algebraic or transcendental. These types of equations can be solved by
using two types of methods-

Direct Method: This method gives the exact value of all the roots directly in a finite number of steps.1.

Indirect or Iterative Method: Iterative methods are best suited for computer programs to solve an2.
equation. It is based on the concept of successive approximation. In Iterative Method there are two ways to
solve an equation-

Bracketing Method: We take two initial points where the root lies in between them. Example-
Bisection Method, False Position Method.

Open End Method: We take one or two initial values where the root may be any-where. Example-
Newton-Raphson Method, Successive Approximation Method, Secant Method.

Implementation in C-

/// Here define different functions to work with
#define f(x) (((x)*(x)*(x)) - (x) - 2)
#define f2(x) ((3*(x)*(x)) - 1)
#define g(x) (cbrt((x) + 2))

/**
* Takes two initial values and shortens the distance by both side.
**/
double BisectionMethod(){
 double root=0;

 double a=1, b=2;
 double c=0;

 int loopCounter=0;
 if(f(a)*f(b) < 0){
 while(1){
 loopCounter++;
 c=(a+b)/2;

 if(f(c)<0.00001 && f(c)>-0.00001){
 root=c;
 break;
 }

 if((f(a))*(f(c)) < 0){
 b=c;
 }else{
 a=c;
 }

Algorithms Notes for Professionals 214

 }
 }
 printf("It took %d loops.\n", loopCounter);

 return root;
}

/**
* Takes two initial values and shortens the distance by single side.
**/
double FalsePosition(){
 double root=0;

 double a=1, b=2;
 double c=0;

 int loopCounter=0;
 if(f(a)*f(b) < 0){
 while(1){
 loopCounter++;

 c=(a*f(b) - b*f(a)) / (f(b) - f(a));

 /*/printf("%lf\t %lf \n", c, f(c));/**////test
 if(f(c)<0.00001 && f(c)>-0.00001){
 root=c;
 break;
 }

 if((f(a))*(f(c)) < 0){
 b=c;
 }else{
 a=c;
 }
 }
 }
 printf("It took %d loops.\n", loopCounter);

 return root;
}

/**
* Uses one initial value and gradually takes that value near to the real one.
**/
double NewtonRaphson(){
 double root=0;

 double x1=1;
 double x2=0;

 int loopCounter=0;
 while(1){
 loopCounter++;

 x2 = x1 - (f(x1)/f2(x1));
 /*/printf("%lf \t %lf \n", x2, f(x2));/**////test

 if(f(x2)<0.00001 && f(x2)>-0.00001){
 root=x2;
 break;
 }

Algorithms Notes for Professionals 215

 x1=x2;
 }
 printf("It took %d loops.\n", loopCounter);

 return root;
}

/**
* Uses one initial value and gradually takes that value near to the real one.
**/
double FixedPoint(){
 double root=0;
 double x=1;

 int loopCounter=0;
 while(1){
 loopCounter++;

 if((x-g(x)) <0.00001 && (x-g(x)) >-0.00001){
 root = x;
 break;
 }

 /*/printf("%lf \t %lf \n", g(x), x-(g(x)));/**////test

 x=g(x);
 }
 printf("It took %d loops.\n", loopCounter);

 return root;
}

/**
* uses two initial values & both value approaches to the root.
**/
double Secant(){
 double root=0;

 double x0=1;
 double x1=2;
 double x2=0;

 int loopCounter=0;
 while(1){
 loopCounter++;

 /*/printf("%lf \t %lf \t %lf \n", x0, x1, f(x1));/**////test

 if(f(x1)<0.00001 && f(x1)>-0.00001){
 root=x1;
 break;
 }

 x2 = ((x0*f(x1))-(x1*f(x0))) / (f(x1)-f(x0));

 x0=x1;
 x1=x2;
 }
 printf("It took %d loops.\n", loopCounter);

 return root;
}

Algorithms Notes for Professionals 216

int main(){
 double root;

 root = BisectionMethod();
 printf("Using Bisection Method the root is: %lf \n\n", root);

 root = FalsePosition();
 printf("Using False Position Method the root is: %lf \n\n", root);

 root = NewtonRaphson();
 printf("Using Newton-Raphson Method the root is: %lf \n\n", root);

 root = FixedPoint();
 printf("Using Fixed Point Method the root is: %lf \n\n", root);

 root = Secant();
 printf("Using Secant Method the root is: %lf \n\n", root);

 return 0;
}

Algorithms Notes for Professionals 217

Chapter 48: Longest Common
Subsequence
Section 48.1: Longest Common Subsequence Explanation
One of the most important implementations of Dynamic Programming is finding out the Longest Common
Subsequence. Let's define some of the basic terminologies first.

Subsequence:

A subsequence is a sequence that can be derived from another sequence by deleting some elements without
changing the order of the remaining elements. Let's say we have a string ABC. If we erase zero or one or more than
one character from this string we get the subsequence of this string. So the subsequences of string ABC will be
{"A", "B", "C", "AB", "AC", "BC", "ABC", " "}. Even if we remove all the characters, the empty string will also be a
subsequence. To find out the subsequence, for each characters in a string, we have two options - either we take the
character, or we don't. So if the length of the string is n, there are 2n subsequences of that string.

Longest Common Subsequence:

As the name suggest, of all the common subsequencesbetween two strings, the longest common subsequence(LCS)
is the one with the maximum length. For example: The common subsequences between "HELLOM" and "HMLD"
are "H", "HL", "HM" etc. Here "HLL" is the longest common subsequence which has length 3.

Brute-Force Method:

We can generate all the subsequences of two strings using backtracking. Then we can compare them to find out the
common subsequences. After we'll need to find out the one with the maximum length. We have already seen that,
there are 2n subsequences of a string of length n. It would take years to solve the problem if our n crosses 20-25.

Dynamic Programming Method:

Let's approach our method with an example. Assume that, we have two strings abcdaf and acbcf. Let's denote
these with s1 and s2. So the longest common subsequence of these two strings will be "abcf", which has length 4.
Again I remind you, subsequences need not be continuous in the string. To construct "abcf", we ignored "da" in s1
and "c" in s2. How do we find this out using Dynamic Programming?

We'll start with a table (a 2D array) having all the characters of s1 in a row and all the characters of s2 in column.
Here the table is 0-indexed and we put the characters from 1 to onwards. We'll traverse the table from left to right
for each row. Our table will look like:

 0 1 2 3 4 5 6
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | ch? | | a | b | c | d | a | f |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 0 | | | | | | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 1 | a | | | | | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 2 | c | | | | | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 3 | b | | | | | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 4 | c | | | | | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+

https://en.wikipedia.org/wiki/Longest_common_subsequence_problem
https://en.wikipedia.org/wiki/Longest_common_subsequence_problem

Algorithms Notes for Professionals 218

 5 | f | | | | | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+

Here each row and column represent the length of the longest common subsequence between two strings if we
take the characters of that row and column and add to the prefix before it. For example: Table[2][3] represents the
length of the longest common subsequence between "ac" and "abc".

The 0-th column represents the empty subsequence of s1. Similarly the 0-th row represents the empty
subsequence of s2. If we take an empty subsequence of a string and try to match it with another string, no matter
how long the length of the second substring is, the common subsequence will have 0 length. So we can fill-up the 0-
th rows and 0-th columns with 0's. We get:

 0 1 2 3 4 5 6
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | ch? | | a | b | c | d | a | f |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 1 | a | 0 | | | | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 2 | c | 0 | | | | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 3 | b | 0 | | | | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 4 | c | 0 | | | | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 5 | f | 0 | | | | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+

Let's begin. When we're filling Table[1][1], we're asking ourselves, if we had a string a and another string a and
nothing else, what will be the longest common subsequence here? The length of the LCS here will be 1. Now let's
look at Table[1][2]. We have string ab and string a. The length of the LCS will be 1. As you can see, the rest of the
values will be also 1 for the first row as it considers only string a with abcd, abcda, abcdaf. So our table will look
like:

 0 1 2 3 4 5 6
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | ch? | | a | b | c | d | a | f |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 1 | a | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 2 | c | 0 | | | | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 3 | b | 0 | | | | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 4 | c | 0 | | | | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 5 | f | 0 | | | | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+

For row 2, which will now include c. For Table[2][1] we have ac on one side and a on the other side. So the length of
the LCS is 1. Where did we get this 1 from? From the top, which denotes the LCS a between two substrings. So what
we are saying is, if s1[2] and s2[1] are not same, then the length of the LCS will be the maximum of the length of

Algorithms Notes for Professionals 219

LCS at the top, or at the left. Taking the length of the LCS at the top denotes that, we don't take the current
character from s2. Similarly, Taking the length of the LCS at the left denotes that, we don't take the current
character from s1 to create the LCS. We get:

 0 1 2 3 4 5 6
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | ch? | | a | b | c | d | a | f |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 1 | a | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 2 | c | 0 | 1 | | | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 3 | b | 0 | | | | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 4 | c | 0 | | | | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 5 | f | 0 | | | | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+

So our first formula will be:

if s2[i] is not equal to s1[j]
 Table[i][j] = max(Table[i-1][j], Table[i][j-1]
endif

Moving on, for Table[2][2] we have string ab and ac. Since c and b are not same, we put the maximum of the top or
left here. In this case, it's again 1. After that, for Table[2][3] we have string abc and ac. This time current values of
both row and column are same. Now the length of the LCS will be equal to the maximum length of LCS so far + 1.
How do we get the maximum length of LCS so far? We check the diagonal value, which represents the best match
between ab and a. From this state, for the current values, we added one more character to s1 and s2 which
happened to be the same. So the length of LCS will of course increase. We'll put 1 + 1 = 2 in Table[2][3]. We get,

 0 1 2 3 4 5 6
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | ch? | | a | b | c | d | a | f |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 1 | a | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 2 | c | 0 | 1 | 1 | 2 | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 3 | b | 0 | | | | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 4 | c | 0 | | | | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 5 | f | 0 | | | | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+

So our second formula will be:

if s2[i] equals to s1[j]
 Table[i][j] = Table[i-1][j-1] + 1
endif

Algorithms Notes for Professionals 220

We have defined both the cases. Using these two formulas, we can populate the whole table. After filling up the
table, it will look like this:

 0 1 2 3 4 5 6
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | ch? | | a | b | c | d | a | f |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 1 | a | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 2 | c | 0 | 1 | 1 | 2 | 2 | 2 | 2 |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 3 | b | 0 | 1 | 2 | 2 | 2 | 2 | 2 |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 4 | c | 0 | 1 | 2 | 3 | 3 | 3 | 3 |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 5 | f | 0 | 1 | 2 | 3 | 3 | 3 | 4 |
 +-----+-----+-----+-----+-----+-----+-----+-----+

The length of the LCS between s1 and s2 will be Table[5][6] = 4. Here, 5 and 6 are the length of s2 and s1
respectively. Our pseudo-code will be:

Procedure LCSlength(s1, s2):
Table[0][0] = 0
for i from 1 to s1.length
 Table[0][i] = 0
endfor
for i from 1 to s2.length
 Table[i][0] = 0
endfor
for i from 1 to s2.length
 for j from 1 to s1.length
 if s2[i] equals to s1[j]
 Table[i][j] = Table[i-1][j-1] + 1
 else
 Table[i][j] = max(Table[i-1][j], Table[i][j-1])
 endif
 endfor
endfor
Return Table[s2.length][s1.length]

The time complexity for this algorithm is: O(mn) where m and n denotes the length of each strings.

How do we find out the longest common subsequence? We'll start from the bottom-right corner. We will check
from where the value is coming. If the value is coming from the diagonal, that is if Table[i-1][j-1] is equal to
Table[i][j] - 1, we push either s2[i] or s1[j] (both are the same) and move diagonally. If the value is coming from top,
that means, if Table[i-1][j] is equal to Table[i][j], we move to the top. If the value is coming from left, that means, if
Table[i][j-1] is equal to Table[i][j], we move to the left. When we reach the leftmost or topmost column, our search
ends. Then we pop the values from the stack and print them. The pseudo-code:

Procedure PrintLCS(LCSlength, s1, s2)
temp := LCSlength
S = stack()
i := s2.length
j := s1.length
while i is not equal to 0 and j is not equal to 0
 if Table[i-1][j-1] == Table[i][j] - 1 and s1[j]==s2[i]

Algorithms Notes for Professionals 221

 S.push(s1[j]) //or S.push(s2[i])
 i := i - 1
 j := j - 1
 else if Table[i-1][j] == Table[i][j]
 i := i-1
 else
 j := j-1
 endif
endwhile
while S is not empty
 print(S.pop)
endwhile

Point to be noted: if both Table[i-1][j] and Table[i][j-1] is equal to Table[i][j] and Table[i-1][j-1] is not equal to
Table[i][j] - 1, there can be two LCS for that moment. This pseudo-code doesn't consider this situation. You'll have
to solve this recursively to find multiple LCSs.

The time complexity for this algorithm is: O(max(m, n)).

Algorithms Notes for Professionals 222

Chapter 49: Longest Increasing
Subsequence
Section 49.1: Longest Increasing Subsequence Basic
Information
The Longest Increasing Subsequence problem is to find subsequence from the give input sequence in which
subsequence's elements are sorted in lowest to highest order. All subsequence are not contiguous or unique.

Application of Longest Increasing Subsequence:

Algorithms like Longest Increasing Subsequence, Longest Common Subsequence are used in version control
systems like Git and etc.

Simple form of Algorithm:

Find unique lines which are common to both documents.1.
Take all such lines from the first document and order them according to their appearance in the second2.
document.
Compute the LIS of the resulting sequence (by doing a Patience Sort), getting the longest matching sequence3.
of lines, a correspondence between the lines of two documents.
Recurse the algorithm on each range of lines between already matched ones.4.

Now let us consider a simpler example of the LCS problem. Here, input is only one sequence of distinct integers
a1,a2,...,an., and we want to find the longest increasing subsequence in it. For example, if input is 7,3,8,4,2,6
then the longest increasing subsequence is 3,4,6.

The easiest approach is to sort input elements in increasing order, and apply the LCS algorithm to the original and
sorted sequences. However, if you look at the resulting array you would notice that many values are the same, and
the array looks very repetitive. This suggest that the LIS (longest increasing subsequence) problem can be done
with dynamic programming algorithm using only one-dimensional array.

Pseudo Code:

Describe an array of values we want to compute.1.
For 1 <= i <= n, let A(i) be the length of a longest increasing sequence of input. Note that the length we are
ultimately interested in is max{A(i)|1 ? i ? n}.
Give a recurrence.2.
For 1 <= i <= n, A(i) = 1 + max{A(j)|1 ? j < i and input(j) < input(i)}.
Compute the values of A.3.
Find the optimal solution.4.

The following program uses A to compute an optimal solution. The first part computes a value m such that A(m) is
the length of an optimal increasing subsequence of input. The second part computes an optimal increasing
subsequence, but for convenience we print it out in reverse order. This program runs in time O(n), so the entire
algorithm runs in time O(n^2).

Part 1:

m ? 1
for i : 2..n
 if A(i) > A(m) then

https://en.wikipedia.org/wiki/Longest_increasing_subsequence
https://en.wikipedia.org/wiki/Patience_sorting

Algorithms Notes for Professionals 223

 m ? i
 end if
end for

Part 2:

put a
while A(m) > 1 do
 i ? m?1
 while not(ai < am and A(i) = A(m)?1) do
 i ? i?1
 end while
 m ? i
 put a
 end while

Recursive Solution:

Approach 1:

LIS(A[1..n]):
 if (n = 0) then return 0
 m = LIS(A[1..(n ? 1)])
 B is subsequence of A[1..(n ? 1)] with only elements less than a[n]
 (* let h be size of B, h ? n-1 *)
 m = max(m, 1 + LIS(B[1..h]))
 Output m

Time complexity in Approach 1 : O(n*2^n)

Approach 2:

LIS(A[1..n], x):
 if (n = 0) then return 0
 m = LIS(A[1..(n ? 1)], x)
 if (A[n] < x) then
 m = max(m, 1 + LIS(A[1..(n ? 1)], A[n]))
 Output m

MAIN(A[1..n]):
 return LIS(A[1..n], ?)

Time Complexity in Approach 2: O(n^2)

Approach 3:

LIS(A[1..n]):
 if (n = 0) return 0
 m = 1
 for i = 1 to n ? 1 do
 if (A[i] < A[n]) then
 m = max(m, 1 + LIS(A[1..i]))
 return m

MAIN(A[1..n]):
 return LIS(A[1..i])

Time Complexity in Approach 3: O(n^2)

Algorithms Notes for Professionals 224

Iterative Algorithm:

Computes the values iteratively in bottom up fashion.

LIS(A[1..n]):
 Array L[1..n]
 (* L[i] = value of LIS ending(A[1..i]) *)
 for i = 1 to n do
 L[i] = 1
 for j = 1 to i ? 1 do
 if (A[j] < A[i]) do
 L[i] = max(L[i], 1 + L[j])
 return L

MAIN(A[1..n]):
 L = LIS(A[1..n])
 return the maximum value in L

Time complexity in Iterative approach: O(n^2)

Auxiliary Space: O(n)

Lets take {0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15} as input. So, Longest Increasing Subsequence for the given
input is {0, 2, 6, 9, 11, 15}.

Algorithms Notes for Professionals 225

Chapter 50: Dynamic Time Warping
Section 50.1: Introduction To Dynamic Time Warping
Dynamic Time Warping(DTW) is an algorithm for measuring similarity between two temporal sequences which may
vary in speed. For instance, similarities in walking could be detected using DTW, even if one person was walking
faster than the other, or if there were accelerations and decelerations during the course of an observation. It can be
used to match a sample voice command with others command, even if the person talks faster or slower than the
prerecorded sample voice. DTW can be applied to temporal sequences of video, audio and graphics data-indeed,
any data which can be turned into a linear sequence can be analyzed with DTW.

In general, DTW is a method that calculates an optimal match between two given sequences with certain
restrictions. But let's stick to the simpler points here. Let's say, we have two voice sequences Sample and Test, and
we want to check if these two sequences match or not. Here voice sequence refers to the converted digital signal of
your voice. It might be the amplitude or frequency of your voice that denotes the words you say. Let's assume:

Sample = {1, 2, 3, 5, 5, 5, 6}
Test = {1, 1, 2, 2, 3, 5}

We want to find out the optimal match between these two sequences.

At first, we define the distance between two points, d(x, y) where x and y represent the two points. Let,

d(x, y) = |x - y| //absolute difference

Let's create a 2D matrix Table using these two sequences. We'll calculate the distances between each point of
Sample with every points of Test and find the optimal match between them.

+------+------+------+------+------+------+------+------+
| | 0 | 1 | 1 | 2 | 2 | 3 | 5 |
+------+------+------+------+------+------+------+------+
| 0 | | | | | | | |
+------+------+------+------+------+------+------+------+
| 1 | | | | | | | |
+------+------+------+------+------+------+------+------+
| 2 | | | | | | | |
+------+------+------+------+------+------+------+------+
| 3 | | | | | | | |
+------+------+------+------+------+------+------+------+
| 5 | | | | | | | |
+------+------+------+------+------+------+------+------+
| 5 | | | | | | | |
+------+------+------+------+------+------+------+------+
| 5 | | | | | | | |
+------+------+------+------+------+------+------+------+
| 6 | | | | | | | |
+------+------+------+------+------+------+------+------+

Here, Table[i][j] represents the optimal distance between two sequences if we consider the sequence up to
Sample[i] and Test[j], considering all the optimal distances we observed before.

For the first row, if we take no values from Sample, the distance between this and Test will be infinity. So we put
infinity on the first row. Same goes for the first column. If we take no values from Test, the distance between this
one and Sample will also be infinity. And the distance between 0 and 0 will simply be 0. We get,

https://en.wikipedia.org/wiki/Dynamic_time_warping

Algorithms Notes for Professionals 226

+------+------+------+------+------+------+------+------+
| | 0 | 1 | 1 | 2 | 2 | 3 | 5 |
+------+------+------+------+------+------+------+------+
| 0 | 0 | inf | inf | inf | inf | inf | inf |
+------+------+------+------+------+------+------+------+
| 1 | inf | | | | | | |
+------+------+------+------+------+------+------+------+
| 2 | inf | | | | | | |
+------+------+------+------+------+------+------+------+
| 3 | inf | | | | | | |
+------+------+------+------+------+------+------+------+
| 5 | inf | | | | | | |
+------+------+------+------+------+------+------+------+
| 5 | inf | | | | | | |
+------+------+------+------+------+------+------+------+
| 5 | inf | | | | | | |
+------+------+------+------+------+------+------+------+
| 6 | inf | | | | | | |
+------+------+------+------+------+------+------+------+

Now for each step, we'll consider the distance between each points in concern and add it with the minimum
distance we found so far. This will give us the optimal distance of two sequences up to that position. Our formula
will be,

Table[i][j] := d(i, j) + min(Table[i-1][j], Table[i-1][j-1], Table[i][j-1])

For the first one, d(1, 1) = 0, Table[0][0] represents the minimum. So the value of Table[1][1] will be 0 + 0 = 0. For
the second one, d(1, 2) = 0. Table[1][1] represents the minimum. The value will be: Table[1][2] = 0 + 0 = 0. If we
continue this way, after finishing, the table will look like:

+------+------+------+------+------+------+------+------+
| | 0 | 1 | 1 | 2 | 2 | 3 | 5 |
+------+------+------+------+------+------+------+------+
| 0 | 0 | inf | inf | inf | inf | inf | inf |
+------+------+------+------+------+------+------+------+
| 1 | inf | 0 | 0 | 1 | 2 | 4 | 8 |
+------+------+------+------+------+------+------+------+
| 2 | inf | 1 | 1 | 0 | 0 | 1 | 4 |
+------+------+------+------+------+------+------+------+
| 3 | inf | 3 | 3 | 1 | 1 | 0 | 2 |
+------+------+------+------+------+------+------+------+
| 5 | inf | 7 | 7 | 4 | 4 | 2 | 0 |
+------+------+------+------+------+------+------+------+
| 5 | inf | 11 | 11 | 7 | 7 | 4 | 0 |
+------+------+------+------+------+------+------+------+
| 5 | inf | 15 | 15 | 10 | 10 | 6 | 0 |
+------+------+------+------+------+------+------+------+
| 6 | inf | 20 | 20 | 14 | 14 | 9 | 1 |
+------+------+------+------+------+------+------+------+

The value at Table[7][6] represents the maximum distance between these two given sequences. Here 1 represents
the maximum distance between Sample and Test is 1.

Now if we backtrack from the last point, all the way back towards the starting (0, 0) point, we get a long line that
moves horizontally, vertically and diagonally. Our backtracking procedure will be:

if Table[i-1][j-1] <= Table[i-1][j] and Table[i-1][j-1] <= Table[i][j-1]

Algorithms Notes for Professionals 227

 i := i - 1
 j := j - 1
else if Table[i-1][j] <= Table[i-1][j-1] and Table[i-1][j] <= Table[i][j-1]
 i := i - 1
else
 j := j - 1
end if

We'll continue this till we reach (0, 0). Each move has its own meaning:

A horizontal move represents deletion. That means our Test sequence accelerated during this interval.
A vertical move represents insertion. That means out Test sequence decelerated during this interval.
A diagonal move represents match. During this period Test and Sample were same.

Our pseudo-code will be:

Procedure DTW(Sample, Test):
n := Sample.length
m := Test.length
Create Table[n + 1][m + 1]
for i from 1 to n
 Table[i][0] := infinity
end for
for i from 1 to m
 Table[0][i] := infinity
end for
Table[0][0] := 0
for i from 1 to n
 for j from 1 to m
 Table[i][j] := d(Sample[i], Test[j])
 + minimum(Table[i-1][j-1], //match
 Table[i][j-1], //insertion
 Table[i-1][j]) //deletion
 end for
end for
Return Table[n + 1][m + 1]

We can also add a locality constraint. That is, we require that if Sample[i] is matched with Test[j], then |i - j| is
no larger than w, a window parameter.

https://i.stack.imgur.com/2Bfjj.jpg

Algorithms Notes for Professionals 228

Complexity:

The complexity of computing DTW is O(m * n) where m and n represent the length of each sequence. Faster
techniques for computing DTW include PrunedDTW, SparseDTW and FastDTW.

Applications:

Spoken word recognition
Correlation Power Analysis

Algorithms Notes for Professionals 229

Chapter 51: Pascal's Triangle
Section 51.1: Pascal triangle in C
int i, space, rows, k=0, count = 0, count1 = 0;
row=5;
for(i=1; i<=rows; ++i)
{
 for(space=1; space <= rows-i; ++space)
 {
 printf(" ");
 ++count;
 }

 while(k != 2*i-1)
 {
 if (count <= rows-1)
 {
 printf("%d ", i+k);
 ++count;
 }
 else
 {
 ++count1;
 printf("%d ", (i+k-2*count1));
 }
 ++k;
 }
 count1 = count = k = 0;

 printf("\n");
}

Output

 1
 2 3 2
 3 4 5 4 3
 4 5 6 7 6 5 4
5 6 7 8 9 8 7 6 5

Algorithms Notes for Professionals 230

Chapter 52: Fast Fourier Transform
The Real and Complex form of DFT (Discrete Fourier Transforms) can be used to perform frequency analysis or
synthesis for any discrete and periodic signals. The FFT (Fast Fourier Transform) is an implementation of the DFT
which may be performed quickly on modern CPUs.

Section 52.1: Radix 2 FFT
The simplest and perhaps best-known method for computing the FFT is the Radix-2 Decimation in Time algorithm.
The Radix-2 FFT works by decomposing an N point time domain signal into N time domain signals each composed
of a single point

.

Signal decomposition, or ‘decimation in time’ is achieved by bit reversing the indices for the array of time domain
data. Thus, for a sixteen-point signal, sample 1 (Binary 0001) is swapped with sample 8 (1000), sample 2 (0010) is
swapped with 4 (0100) and so on. Sample swapping using the bit reverse technique can be achieved simply in
software, but limits the use of the Radix 2 FFT to signals of length N = 2^M.

The value of a 1-point signal in the time domain is equal to its value in the frequency domain, thus this array of
decomposed single time-domain points requires no transformation to become an array of frequency domain
points. The N single points; however, need to be reconstructed into one N-point frequency spectra. Optimal
reconstruction of the complete frequency spectrum is performed using butterfly calculations. Each reconstruction
stage in the Radix-2 FFT performs a number of two point butterflies, using a similar set of exponential weighting
functions, Wn^R.

https://i.stack.imgur.com/KNiJM.png

Algorithms Notes for Professionals 231

The FFT removes redundant calculations in the Discrete Fourier Transform by exploiting the periodicity of Wn^R.
Spectral reconstruction is completed in log2(N) stages of butterfly calculations giving X[K]; the real and imaginary
frequency domain data in rectangular form. To convert to magnitude and phase (polar coordinates) requires
finding the absolute value, ?(Re2 + Im2), and argument, tan-1(Im/Re).

The complete butterfly flow diagram for an eight point Radix 2 FFT is shown below. Note the input signals have
previously been reordered according to the decimation in time procedure outlined previously.

https://i.stack.imgur.com/OKYjB.png
https://i.stack.imgur.com/RsWAe.png

Algorithms Notes for Professionals 232

The FFT typically operates on complex inputs and produces a complex output. For real signals, the imaginary part
may be set to zero and real part set to the input signal, x[n], however many optimisations are possible involving the
transformation of real-only data. Values of Wn^R used throughout the reconstruction can be determined using the
exponential weighting equation.

The value of R (the exponential weighting power) is determined the current stage in the spectral reconstruction and
the current calculation within a particular butterfly.

Code Example (C/C++)

A C/C++ code sample for computing the Radix 2 FFT can be found below. This is a simple implementation which
works for any size N where N is a power of 2. It is approx 3x slower than the fastest FFTw implementation, but still a
very good basis for future optimisation or for learning about how this algorithm works.

#include <math.h>

#define PI 3.1415926535897932384626433832795 // PI for sine/cos calculations
#define TWOPI 6.283185307179586476925286766559 // 2*PI for sine/cos calculations
#define Deg2Rad 0.017453292519943295769236907684886 // Degrees to Radians factor
#define Rad2Deg 57.295779513082320876798154814105 // Radians to Degrees factor
#define log10_2 0.30102999566398119521373889472449 // Log10 of 2
#define log10_2_INV 3.3219280948873623478703194294948 // 1/Log10(2)

// complex variable structure (double precision)
struct complex
{
public:
 double Re, Im; // Not so complicated after all
};

// Returns true if N is a power of 2
bool isPwrTwo(int N, int *M)
{
 *M = (int)ceil(log10((double)N) * log10_2_INV);// M is number of stages to perform. 2^M = N
 int NN = (int)pow(2.0, *M);

https://i.stack.imgur.com/4plRM.png

Algorithms Notes for Professionals 233

 if ((NN != N) || (NN == 0)) // Check N is a power of 2.
 return false;

 return true;
}

void rad2FFT(int N, complex *x, complex *DFT)
{
 int M = 0;

 // Check if power of two. If not, exit
 if (!isPwrTwo(N, &M))
 throw "Rad2FFT(): N must be a power of 2 for Radix FFT";

 // Integer Variables

 int BSep; // BSep is memory spacing between butterflies
 int BWidth; // BWidth is memory spacing of opposite ends of the butterfly
 int P; // P is number of similar Wn's to be used in that stage
 int j; // j is used in a loop to perform all calculations in each stage
 int stage = 1; // stage is the stage number of the FFT. There are M stages in total
(1 to M).
 int HiIndex; // HiIndex is the index of the DFT array for the top value of each
butterfly calc
 unsigned int iaddr; // bitmask for bit reversal
 int ii; // Integer bitfield for bit reversal (Decimation in Time)
 int MM1 = M - 1;

 unsigned int i;
 int l;
 unsigned int nMax = (unsigned int)N;

 // Double Precision Variables
 double TwoPi_N = TWOPI / (double)N; // constant to save computational time. = 2*PI / N
 double TwoPi_NP;

 // complex Variables (See 'struct complex')
 complex WN; // Wn is the exponential weighting function in the form a + jb
 complex TEMP; // TEMP is used to save computation in the butterfly calc
 complex *pDFT = DFT; // Pointer to first elements in DFT array
 complex *pLo; // Pointer for lo / hi value of butterfly calcs
 complex *pHi;
 complex *pX; // Pointer to x[n]

 // Decimation In Time - x[n] sample sorting
 for (i = 0; i < nMax; i++, DFT++)
 {
 pX = x + i; // Calculate current x[n] from base address *x and index i.
 ii = 0; // Reset new address for DFT[n]
 iaddr = i; // Copy i for manipulations
 for (l = 0; l < M; l++) // Bit reverse i and store in ii...
 {
 if (iaddr & 0x01) // Detemine least significant bit
 ii += (1 << (MM1 - l)); // Increment ii by 2^(M-1-l) if lsb was 1
 iaddr >>= 1; // right shift iaddr to test next bit. Use logical
operations for speed increase
 if (!iaddr)
 break;
 }
 DFT = pDFT + ii; // Calculate current DFT[n] from base address *pDFT and bit
reversed index ii

Algorithms Notes for Professionals 234

 DFT->Re = pX->Re; // Update the complex array with address sorted time domain signal
x[n]
 DFT->Im = pX->Im; // NB: Imaginary is always zero
 }

 // FFT Computation by butterfly calculation
 for (stage = 1; stage <= M; stage++) // Loop for M stages, where 2^M = N
 {
 BSep = (int)(pow(2, stage)); // Separation between butterflies = 2^stage
 P = N / BSep; // Similar Wn's in this stage = N/Bsep
 BWidth = BSep / 2; // Butterfly width (spacing between opposite points) = Separation /
2.

 TwoPi_NP = TwoPi_N*P;

 for (j = 0; j < BWidth; j++) // Loop for j calculations per butterfly
 {
 if (j != 0) // Save on calculation if R = 0, as WN^0 = (1 + j0)
 {
 //WN.Re = cos(TwoPi_NP*j)
 WN.Re = cos(TwoPi_N*P*j); // Calculate Wn (Real and Imaginary)
 WN.Im = -sin(TwoPi_N*P*j);
 }

 for (HiIndex = j; HiIndex < N; HiIndex += BSep) // Loop for HiIndex Step BSep
butterflies per stage
 {
 pHi = pDFT + HiIndex; // Point to higher value
 pLo = pHi + BWidth; // Point to lower value (Note VC++ adjusts
for spacing between elements)

 if (j != 0) // If exponential power is not zero...
 {
 //CMult(pLo, &WN, &TEMP); // Perform complex multiplication of Lovalue
with Wn
 TEMP.Re = (pLo->Re * WN.Re) - (pLo->Im * WN.Im);
 TEMP.Im = (pLo->Re * WN.Im) + (pLo->Im * WN.Re);

 //CSub (pHi, &TEMP, pLo);
 pLo->Re = pHi->Re - TEMP.Re; // Find new Lovalue (complex subtraction)
 pLo->Im = pHi->Im - TEMP.Im;

 //CAdd (pHi, &TEMP, pHi); // Find new Hivalue (complex addition)
 pHi->Re = (pHi->Re + TEMP.Re);
 pHi->Im = (pHi->Im + TEMP.Im);
 }
 else
 {
 TEMP.Re = pLo->Re;
 TEMP.Im = pLo->Im;

 //CSub (pHi, &TEMP, pLo);
 pLo->Re = pHi->Re - TEMP.Re; // Find new Lovalue (complex subtraction)
 pLo->Im = pHi->Im - TEMP.Im;

 //CAdd (pHi, &TEMP, pHi); // Find new Hivalue (complex addition)
 pHi->Re = (pHi->Re + TEMP.Re);
 pHi->Im = (pHi->Im + TEMP.Im);
 }
 }
 }
 }

Algorithms Notes for Professionals 235

 pLo = 0; // Null all pointers
 pHi = 0;
 pDFT = 0;
 DFT = 0;
 pX = 0;
}

Section 52.2: Radix 2 Inverse FFT
Due to the strong duality of the Fourier Transform, adjusting the output of a forward transform can produce the
inverse FFT. Data in the frequency domain can be converted to the time domain by the following method:

Find the complex conjugate of the frequency domain data by inverting the imaginary component for all1.
instances of K.
Perform the forward FFT on the conjugated frequency domain data.2.
Divide each output of the result of this FFT by N to give the true time domain value.3.
Find the complex conjugate of the output by inverting the imaginary component of the time domain data for4.
all instances of n.

Note: both frequency and time domain data are complex variables. Typically the imaginary component of the time
domain signal following an inverse FFT is either zero, or ignored as rounding error. Increasing the precision of variables
from 32-bit float to 64-bit double, or 128-bit long double significantly reduces rounding errors produced by several
consecutive FFT operations.

Code Example (C/C++)

#include <math.h>

#define PI 3.1415926535897932384626433832795 // PI for sine/cos calculations
#define TWOPI 6.283185307179586476925286766559 // 2*PI for sine/cos calculations
#define Deg2Rad 0.017453292519943295769236907684886 // Degrees to Radians factor
#define Rad2Deg 57.295779513082320876798154814105 // Radians to Degrees factor
#define log10_2 0.30102999566398119521373889472449 // Log10 of 2
#define log10_2_INV 3.3219280948873623478703194294948 // 1/Log10(2)

// complex variable structure (double precision)
struct complex
{
public:
 double Re, Im; // Not so complicated after all
};

void rad2InverseFFT(int N, complex *x, complex *DFT)
{
 // M is number of stages to perform. 2^M = N
 double Mx = (log10((double)N) / log10((double)2));
 int a = (int)(ceil(pow(2.0, Mx)));
 int status = 0;
 if (a != N) // Check N is a power of 2
 {
 x = 0;
 DFT = 0;
 throw "rad2InverseFFT(): N must be a power of 2 for Radix 2 Inverse FFT";
 }

 complex *pDFT = DFT; // Reset vector for DFT pointers
 complex *pX = x; // Reset vector for x[n] pointer
 double NN = 1 / (double)N; // Scaling factor for the inverse FFT

Algorithms Notes for Professionals 236

 for (int i = 0; i < N; i++, DFT++)
 DFT->Im *= -1; // Find the complex conjugate of the Frequency Spectrum

 DFT = pDFT; // Reset Freq Domain Pointer
 rad2FFT(N, DFT, x); // Calculate the forward FFT with variables switched (time & freq)

 int i;
 complex* x;
 for (i = 0, x = pX; i < N; i++, x++){
 x->Re *= NN; // Divide time domain by N for correct amplitude scaling
 x->Im *= -1; // Change the sign of ImX
 }
}

Algorithms Notes for Professionals 237

Chapter 53: Algo:- Print a m*n matrix in
square wise
Check sample input and output below.

Section 53.1: Sample Example
Input:

14 15 16 17 18 21
19 10 20 11 54 36
64 55 44 23 80 39
91 92 93 94 95 42

Output:
print value in index
14 15 16 17 18 21 36 39 42 95 94 93 92 91 64 19 10 20 11 54 80 23 44 55

or print index
00 01 02 03 04 05 15 25 35 34 33 32 31 30 20 10 11 12 13 14 24 23 22 21

Section 53.2: Write the generic code
function noOfLooping(m,n) {
 if(m > n) {
 smallestValue = n;
 } else {
 smallestValue = m;
 }

 if(smallestValue % 2 == 0) {
 return smallestValue/2;
 } else {
 return (smallestValue+1)/2;
 }
}

function squarePrint(m,n) {
 var looping = noOfLooping(m,n);
 for(var i = 0; i < looping; i++) {
 for(var j = i; j < m - 1 - i; j++) {
 console.log(i+''+j);
 }
 for(var k = i; k < n - 1 - i; k++) {
 console.log(k+''+j);
 }
 for(var l = j; l > i; l--) {
 console.log(k+''+l);
 }
 for(var x = k; x > i; x--) {
 console.log(x+''+l);
 }
 }
}

squarePrint(6,4);

Algorithms Notes for Professionals 238

Chapter 54: Check two strings are
anagrams
Two string with same set of character is called anagram. I have used javascript here.

We will create an hash of str1 and increase count +1. We will loop on 2nd string and check all characters are there
in hash and decrease value of hash key. Check all value of hash key are zero will be anagram.

Section 54.1: Sample input and output
Ex1:

let str1 = 'stackoverflow';
let str2 = 'flowerovstack';

These strings are anagrams.

// Create Hash from str1 and increase one count.

hashMap = {
 s : 1,
 t : 1,
 a : 1,
 c : 1,
 k : 1,
 o : 2,
 v : 1,
 e : 1,
 r : 1,
 f : 1,
 l : 1,
 w : 1
}

You can see hashKey 'o' is containing value 2 because o is 2 times in string.

Now loop over str2 and check for each character are present in hashMap, if yes, decrease value of hashMap Key,
else return false (which indicate it's not anagram).

hashMap = {
 s : 0,
 t : 0,
 a : 0,
 c : 0,
 k : 0,
 o : 0,
 v : 0,
 e : 0,
 r : 0,
 f : 0,
 l : 0,
 w : 0
}

Now, loop over hashMap object and check all values are zero in the key of hashMap.

Algorithms Notes for Professionals 239

In our case all values are zero so its a anagram.

Section 54.2: Generic Code for Anagrams
(function(){

 var hashMap = {};

 function isAnagram (str1, str2) {

 if(str1.length !== str2.length){
 return false;
 }

 // Create hash map of str1 character and increase value one (+1).
 createStr1HashMap(str1);

 // Check str2 character are key in hash map and decrease value by one(-1);
 var valueExist = createStr2HashMap(str2);

 // Check all value of hashMap keys are zero, so it will be anagram.
 return isStringsAnagram(valueExist);
 }

 function createStr1HashMap (str1) {
 [].map.call(str1, function(value, index, array){
 hashMap[value] = value in hashMap ? (hashMap[value] + 1) : 1;
 return value;
 });
 }

 function createStr2HashMap (str2) {
 var valueExist = [].every.call(str2, function(value, index, array){
 if(value in hashMap) {
 hashMap[value] = hashMap[value] - 1;
 }
 return value in hashMap;
 });
 return valueExist;
 }

 function isStringsAnagram (valueExist) {
 if(!valueExist) {
 return valueExist;
 } else {
 var isAnagram;
 for(var i in hashMap) {
 if(hashMap[i] !== 0) {
 isAnagram = false;
 break;
 } else {
 isAnagram = true;
 }
 }

 return isAnagram;
 }
 }

 isAnagram('stackoverflow', 'flowerovstack'); // true
 isAnagram('stackoverflow', 'flowervvstack'); // false

Algorithms Notes for Professionals 240

})();

Time complexity: 3n i.e O(n).

Algorithms Notes for Professionals 241

Chapter 55: Applications of Dynamic
Programming
The basic idea behind dynamic programming is breaking a complex problem down to several small and simple
problems that are repeated. If you can identify a simple subproblem that is repeatedly calculated, odds are there is
a dynamic programming approach to the problem.

As this topic is titled Applications of Dynamic Programming, it will focus more on applications rather than the process
of creating dynamic programming algorithms.

Section 55.1: Fibonacci Numbers
Fibonacci Numbers are a prime subject for dynamic programming as the traditional recursive approach makes a lot
of repeated calculations. In these examples I will be using the base case of f(0) = f(1) = 1.

Here is an example recursive tree for fibonacci(4), note the repeated computations:

Non-Dynamic Programming O(2^n) Runtime Complexity, O(n) Stack complexity

def fibonacci(n):
 if n < 2:
 return 1
 return fibonacci(n-1) + fibonacci(n-2)

This is the most intuitive way to write the problem. At most the stack space will be O(n) as you descend the first
recursive branch making calls to fibonacci(n-1) until you hit the base case n < 2.

The O(2^n) runtime complexity proof that can be seen here: Computational complexity of Fibonacci Sequence. The
main point to note is that the runtime is exponential, which means the runtime for this will double for every
subsequent term, fibonacci(15) will take twice as long as fibonacci(14).

Memoized O(n) Runtime Complexity, O(n) Space complexity, O(n) Stack complexity

memo = []
memo.append(1) # f(1) = 1
memo.append(1) # f(2) = 1

def fibonacci(n):
 if len(memo) > n:
 return memo[n]

https://en.wikipedia.org/wiki/Fibonacci_number
https://i.stack.imgur.com/CLwKE.jpg
https://stackoverflow.com/questions/360748/computational-complexity-of-fibonacci-sequence

Algorithms Notes for Professionals 242

 result = fibonacci(n-1) + fibonacci(n-2)
 memo.append(result) # f(n) = f(n-1) + f(n-2)
 return result

With the memoized approach we introduce an array that can be thought of as all the previous function calls. The
location memo[n] is the result of the function call fibonacci(n). This allows us to trade space complexity of O(n) for
a O(n) runtime as we no longer need to compute duplicate function calls.

Iterative Dynamic Programming O(n) Runtime complexity, O(n) Space complexity, No recursive stack

def fibonacci(n):
 memo = [1,1] # f(0) = 1, f(1) = 1

 for i in range(2, n+1):
 memo.append(memo[i-1] + memo[i-2])

 return memo[n]

If we break the problem down into it's core elements you will notice that in order to compute fibonacci(n) we
need fibonacci(n-1) and fibonacci(n-2). Also we can notice that our base case will appear at the end of that
recursive tree as seen above.

With this information, it now makes sense to compute the solution backwards, starting at the base cases and
working upwards. Now in order to calculate fibonacci(n) we first calculate all the fibonacci numbers up to and
through n.

This main benefit here is that we now have eliminated the recursive stack while keeping the O(n) runtime.
Unfortunately, we still have an O(n) space complexity but that can be changed as well.

Advanced Iterative Dynamic Programming O(n) Runtime complexity, O(1) Space complexity, No recursive stack

def fibonacci(n):
 memo = [1,1] # f(1) = 1, f(2) = 1

 for i in range (2, n):
 memo[i%2] = memo[0] + memo[1]

 return memo[n%2]

As noted above, the iterative dynamic programming approach starts from the base cases and works to the end
result. The key observation to make in order to get to the space complexity to O(1) (constant) is the same
observation we made for the recursive stack - we only need fibonacci(n-1) and fibonacci(n-2) to build
fibonacci(n). This means that we only need to save the results for fibonacci(n-1) and fibonacci(n-2) at any
point in our iteration.

To store these last 2 results I use an array of size 2 and simply flip which index I am assigning to by using i % 2
which will alternate like so: 0, 1, 0, 1, 0, 1, ..., i % 2.

I add both indexes of the array together because we know that addition is commutative (5 + 6 = 11 and 6 + 5 ==
11). The result is then assigned to the older of the two spots (denoted by i % 2). The final result is then stored at
the position n%2

Notes

It is important to note that sometimes it may be best to come up with a iterative memoized solution for
functions that perform large calculations repeatedly as you will build up a cache of the answer to the

Algorithms Notes for Professionals 243

function calls and subsequent calls may be O(1) if it has already been computed.

Algorithms Notes for Professionals 244

Appendix A: Pseudocode
Section A.1: Variable aectations
You could describe variable affectation in different ways.

Typed
int a = 1
int a := 1
let int a = 1
int a <- 1

No type
a = 1
a := 1
let a = 1
a <- 1

Section A.2: Functions
As long as the function name, return statement and parameters are clear, you're fine.

def incr n
 return n + 1

or

let incr(n) = n + 1

or

function incr (n)
 return n + 1

are all quite clear, so you may use them. Try not to be ambiguous with a variable affectation

Algorithms Notes for Professionals 245

Credits
Thank you greatly to all the people from Stack Overflow Documentation who helped provide this content,

more changes can be sent to web@petercv.com for new content to be published or updated

Abdul Karim Chapter 1
afeldspar Chapter 43
Ahmad Faiyaz Chapter 23
Alber Tadrous Chapter 17
Anagh Hegde Chapters 24 and 39
Andrii Artamonov Chapter 21
AnukuL Chapter 40
Bakhtiar Hasan Chapters 3, 8, 10, 13, 40, 5, 15, 41, 42, 12, 46, 48 and 50
Benson Lin Chapters 8, 39 and 44
brijs Chapter 39
Chris Chapter 55
Creative John Chapters 53 and 54
Deepak Chapter 24
Dian Bakti Chapter 4
Didgeridoo Chapters 2 and 43
Dipesh Poudel Chapter 14
Dr. ABT Chapter 52
EsmaeelE Chapters 24, 2, 39, 25 and 51
Filip Allberg Chapters 1 and 3
ghilesZ Chapter 10
goeddek Chapters 11 and 21
greatwolf Chapter 35
Ijaz Khan Chapter 24
invisal Chapter 26
Isha Agarwal Chapters 35, 34, 36, 37 and 38
Ishit Mehta Chapter 35
IVlad Chapters 23 and 9
Iwan Chapter 25
Janaky Murthy Chapter 36
JJTO Chapter 3
Julien Rousé Chapter 18
Juxhin Metaj Chapters 2 and 25
Keyur Ramoliya Chapters 24, 25, 26, 27, 28, 45, 29, 31, 30, 32, 16, 33, 48, 49 and 51
Khaled.K Chapter 39
kiner_shah Chapter 6
lambda Chapter 33
Luv Agarwal Chapter 25
Lymphatus Chapter 26
M S Hossain Chapter 10
Malav Chapter 28
Malcolm McLean Chapters 39 and 34
Martin Frank Chapter 14
Mehedi Hasan Chapter 35
Miljen Mikic Chapters 23, 2 and 39
Minhas Kamal Chapters 47 and 6
mnoronha Chapters 24, 26, 27, 28, 45, 29, 31, 30 and 16
msohng Chapter 39
Nick Larsen Chapter 2
Nick the coder Chapter 22

mailto:web@petercv.com
https://stackoverflow.com/users/5108673/
https://stackoverflow.com/users/33904/
https://stackoverflow.com/users/1890199/
https://stackoverflow.com/users/7310948/
https://stackoverflow.com/users/6181189/
https://stackoverflow.com/users/5339154/
https://stackoverflow.com/users/2795050/
https://stackoverflow.com/users/6879340/
https://stackoverflow.com/users/6800367/
https://stackoverflow.com/users/5304035/
https://stackoverflow.com/users/2341336/
https://stackoverflow.com/users/5065086/
https://stackoverflow.com/users/1796837/
https://stackoverflow.com/users/7003027/
https://stackoverflow.com/users/1307725/
https://stackoverflow.com/users/5309397/
https://stackoverflow.com/users/303612/
https://stackoverflow.com/users/7508077/
https://stackoverflow.com/users/5045375/
https://stackoverflow.com/users/7214292/
https://stackoverflow.com/users/4515432/
https://stackoverflow.com/users/234175/
https://stackoverflow.com/users/4550110/
https://stackoverflow.com/users/1332934/
https://stackoverflow.com/users/5489591/
https://stackoverflow.com/users/2516438/
https://stackoverflow.com/users/270287/
https://stackoverflow.com/users/4900669/
https://stackoverflow.com/users/5537078/
https://stackoverflow.com/users/6732642/
https://stackoverflow.com/users/3729797/
https://stackoverflow.com/users/7190578/
https://stackoverflow.com/users/6326344/
https://stackoverflow.com/users/2128327/
https://stackoverflow.com/users/4688321/
https://stackoverflow.com/users/7565799/
https://stackoverflow.com/users/5016614/
https://stackoverflow.com/users/5222625/
https://stackoverflow.com/users/5882770/
https://stackoverflow.com/users/3572733/
https://stackoverflow.com/users/3310281/
https://stackoverflow.com/users/2910751/
https://stackoverflow.com/users/2176115/
https://stackoverflow.com/users/1460628/
https://stackoverflow.com/users/4684058/
https://stackoverflow.com/users/2608433/
https://stackoverflow.com/users/3208967/
https://stackoverflow.com/users/178082/
https://stackoverflow.com/users/4298392/

Algorithms Notes for Professionals 246

optimistanoop Chapters 24 and 28
Peter K Chapter 2
Rashik Hasnat Chapter 40
Roberto Fernandez Chapter 6
samgak Chapter 24
Samuel Peter Chapter 22
Santiago Gil Chapter 25
Sayakiss Chapters 3 and 8
SHARMA Chapter 25
ShreePool Chapter 39
Shubham Chapter 9
Sumeet Singh Chapters 13 and 41
TajyMany Chapters 6 and 7
Tejus Prasad Chapters 2, 3, 35, 5, 45, 12 and 11
theJollySin Chapter 10
umop apisdn Chapter 39
user23013 Chapter 3
VermillionAzure Chapters 3 and 34
Vishwas Chapters 8, 20 and 19
WitVault Chapter 22
xenteros Chapters 24, 10 and 39
Yair Twito Chapter 2
yd1 Chapter 34
Yerken Chapters 9 and 13
YoungHobbit Chapter 24

https://stackoverflow.com/users/3566045/
https://stackoverflow.com/users/4896952/
https://stackoverflow.com/users/6400629/
https://stackoverflow.com/users/4110708/
https://stackoverflow.com/users/696391/
https://stackoverflow.com/users/2510655/
https://stackoverflow.com/users/5379399/
https://stackoverflow.com/users/1291716/
https://stackoverflow.com/users/3465421/
https://stackoverflow.com/users/5956891/
https://stackoverflow.com/users/3160529/
https://stackoverflow.com/users/4391177/
https://stackoverflow.com/users/1524047/
https://stackoverflow.com/users/3409405/
https://stackoverflow.com/users/1287593/
https://stackoverflow.com/users/7533465/
https://stackoverflow.com/users/3998030/
https://stackoverflow.com/users/3819850/
https://stackoverflow.com/users/3870293/
https://stackoverflow.com/users/1745409/
https://stackoverflow.com/users/4723795/
https://stackoverflow.com/users/6709421/
https://stackoverflow.com/users/6952491/
https://stackoverflow.com/users/1597656/
https://stackoverflow.com/users/2254048/

You may also like

http://goalkicker.com/CBook
http://goalkicker.com/CSharpBook
http://goalkicker.com/CPlusPlusBook
http://goalkicker.com/JavaBook
http://goalkicker.com/ObjectiveCBook
http://goalkicker.com/PHPBook
http://goalkicker.com/PythonBook
http://goalkicker.com/RubyBook
http://goalkicker.com/VisualBasic_NETBook

	Content list
	About
	Chapter 1: Getting started with algorithm
	Section 1.1: A sample algorithmic problem
	Section 1.2: Getting Started with Simple Fizz Buzz Algorithm in Swift

	Chapter 2: Algorithm Complexity
	Section 2.1: Big-Theta notation
	Section 2.2: Comparison of the asymptotic notations
	Section 2.3: Big-Omega Notation

	Chapter 3: Graph
	Section 3.1: Storing Graphs (Adjacency Matrix)
	Section 3.2: Introduction To Graph Theory
	Section 3.3: Storing Graphs (Adjacency List)
	Section 3.4: Topological Sort
	Section 3.5: Detecting a cycle in a directed graph using Depth First Traversal
	Section 3.6: Thorup's algorithm

	Chapter 4: Graph Traversals
	Section 4.1: Depth First Search traversal function

	Chapter 5: Dijkstra’s Algorithm
	Section 5.1: Dijkstra's Shortest Path Algorithm

	Chapter 6: A* Pathﬁnding
	Section 6.1: Introduction to A*
	Section 6.2: A* Pathﬁnding through a maze with no obstacles
	Section 6.3: Solving 8-puzzle problem using A* algorithm

	Chapter 7: A* Pathﬁnding Algorithm
	Section 7.1: Simple Example of A* Pathﬁnding: A maze with no obstacles

	Chapter 8: Dynamic Programming
	Section 8.1: Edit Distance
	Section 8.2: Weighted Job Scheduling Algorithm
	Section 8.3: Longest Common Subsequence
	Section 8.4: Fibonacci Number
	Section 8.5: Longest Common Substring

	Chapter 9: Kruskal's Algorithm
	Section 9.1: Optimal, disjoint-set based implementation
	Section 9.2: Simple, more detailed implementation
	Section 9.3: Simple, disjoint-set based implementation
	Section 9.4: Simple, high level implementation

	Chapter 10: Greedy Algorithms
	Section 10.1: Human Coding
	Section 10.2: Activity Selection Problem
	Section 10.3: Change-making problem

	Chapter 11: Applications of Greedy technique
	Section 11.1: Oine Caching
	Section 11.2: Ticket automat
	Section 11.3: Interval Scheduling
	Section 11.4: Minimizing Lateness

	Chapter 12: Prim's Algorithm
	Section 12.1: Introduction To Prim's Algorithm

	Chapter 13: Bellman–Ford Algorithm
	Section 13.1: Single Source Shortest Path Algorithm (Given there is a negative cycle in a graph)
	Section 13.2: Detecting Negative Cycle in a Graph
	Section 13.3: Why do we need to relax all the edges at most (V-1) times

	Chapter 14: Line Algorithm
	Section 14.1: Bresenham Line Drawing Algorithm

	Chapter 15: Floyd-Warshall Algorithm
	Section 15.1: All Pair Shortest Path Algorithm

	Chapter 16: Catalan Number Algorithm
	Section 16.1: Catalan Number Algorithm Basic Information

	Chapter 17: polynomial-time bounded algorithm for Minimum Vertex Cover
	Section 17.1: Algorithm Pseudo Code

	Chapter 18: Multithreaded Algorithms
	Section 18.1: Square matrix multiplication multithread
	Section 18.2: Multiplication matrix vector multithread
	Section 18.3: merge-sort multithread

	Chapter 19: Knuth Morris Pratt (KMP) Algorithm
	Section 19.1: KMP-Example

	Chapter 20: Edit Distance Dynamic Algorithm
	Section 20.1: Minimum Edits required to convert string 1 to string 2

	Chapter 21: Online algorithms
	Section 21.1: Paging (Online Caching)

	Chapter 22: Big-O Notation
	Section 22.1: A Simple Loop
	Section 22.2: A Nested Loop
	Section 22.3: O(log n) types of Algorithms
	Section 22.4: An O(log n) example

	Chapter 23: Sorting
	Section 23.1: Stability in Sorting

	Chapter 24: Bubble Sort
	Section 24.1: Bubble Sort
	Section 24.2: Implementation in C & C++
	Section 24.3: Implementation in C#
	Section 24.4: Python Implementation
	Section 24.5: Implementation in Java
	Section 24.6: Implementation in Javascript

	Chapter 25: Merge Sort
	Section 25.1: Merge Sort Basics
	Section 25.2: Merge Sort Implementation in Go
	Section 25.3: Merge Sort Implementation in C & C#
	Section 25.4: Merge Sort Implementation in Java
	Section 25.5: Merge Sort Implementation in Python
	Section 25.6: Bottoms-up Java Implementation

	Chapter 26: Insertion Sort
	Section 26.1: Haskell Implementation

	Chapter 27: Bucket Sort
	Section 27.1: C# Implementation

	Chapter 28: Quicksort
	Section 28.1: Quicksort Basics
	Section 28.2: Quicksort in Python
	Section 28.3: Lomuto partition java implementation

	Chapter 29: Counting Sort
	Section 29.1: Counting Sort Basic Information
	Section 29.2: Psuedocode Implementation

	Chapter 30: Heap Sort
	Section 30.1: C# Implementation
	Section 30.2: Heap Sort Basic Information

	Chapter 31: Cycle Sort
	Section 31.1: Pseudocode Implementation

	Chapter 32: Odd-Even Sort
	Section 32.1: Odd-Even Sort Basic Information

	Chapter 33: Selection Sort
	Section 33.1: Elixir Implementation
	Section 33.2: Selection Sort Basic Information
	Section 33.3: Implementation of Selection sort in C#

	Chapter 34: Trees
	Section 34.1: Typical anary tree representation
	Section 34.2: Introduction
	Section 34.3: To check if two Binary trees are same or not

	Chapter 35: Binary Search Trees
	Section 35.1: Binary Search Tree - Insertion (Python)
	Section 35.2: Binary Search Tree - Deletion(C++)
	Section 35.3: Lowest common ancestor in a BST
	Section 35.4: Binary Search Tree - Python

	Chapter 36: Check if a tree is BST or not
	Section 36.1: Algorithm to check if a given binary tree is BST
	Section 36.2: If a given input tree follows Binary search tree property or not

	Chapter 37: Binary Tree traversals
	Section 37.1: Level Order traversal - Implementation
	Section 37.2: Pre-order, Inorder and Post Order traversal of a Binary Tree

	Chapter 38: Lowest common ancestor of a Binary Tree
	Section 38.1: Finding lowest common ancestor

	Chapter 39: Searching
	Section 39.1: Binary Search
	Section 39.2: Rabin Karp
	Section 39.3: Analysis of Linear search (Worst, Average and Best Cases)
	Section 39.4: Binary Search: On Sorted Numbers
	Section 39.5: Linear search

	Chapter 40: Substring Search
	Section 40.1: Introduction To Knuth-Morris-Pratt (KMP) Algorithm
	Section 40.2: Introduction to Rabin-Karp Algorithm
	Section 40.3: Python Implementation of KMP algorithm
	Section 40.4: KMP Algorithm in C

	Chapter 41: Breadth-First Search
	Section 41.1: Finding the Shortest Path from Source to other Nodes
	Section 41.2: Finding Shortest Path from Source in a 2D graph
	Section 41.3: Connected Components Of Undirected Graph Using BFS

	Chapter 42: Depth First Search
	Section 42.1: Introduction To Depth-First Search

	Chapter 43: Hash Functions
	Section 43.1: Hash codes for common types in C#
	Section 43.2: Introduction to hash functions

	Chapter 44: Travelling Salesman
	Section 44.1: Brute Force Algorithm
	Section 44.2: Dynamic Programming Algorithm

	Chapter 45: Knapsack Problem
	Section 45.1: Knapsack Problem Basics
	Section 45.2: Solution Implemented in C#

	Chapter 46: Matrix Exponentiation
	Section 46.1: Matrix Exponentiation to Solve Example Problems

	Chapter 47: Equation Solving
	Section 47.1: Linear Equation
	Section 47.2: Non-Linear Equation

	Chapter 48: Longest Common Subsequence
	Section 48.1: Longest Common Subsequence Explanation

	Chapter 49: Longest Increasing Subsequence
	Section 49.1: Longest Increasing Subsequence Basic Information

	Chapter 50: Dynamic Time Warping
	Section 50.1: Introduction To Dynamic Time Warping

	Chapter 51: Pascal's Triangle
	Section 51.1: Pascal triangle in C

	Chapter 52: Fast Fourier Transform
	Section 52.1: Radix 2 FFT
	Section 52.2: Radix 2 Inverse FFT

	Chapter 53: Algo:- Print a m*n matrix in square wise
	Section 53.1: Sample Example
	Section 53.2: Write the generic code

	Chapter 54: Check two strings are anagrams
	Section 54.1: Sample input and output
	Section 54.2: Generic Code for Anagrams

	Chapter 55: Applications of Dynamic Programming
	Section 55.1: Fibonacci Numbers

	Appendix A: Pseudocode
	Section A.1: Variable aectations
	Section A.2: Functions

	Credits
	You may also like

