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Abstract. We present a framework that generates beat synchronous
dance animation based on the analysis of both visual and audio data.
First, the articulated motion of a dancer is captured based on marker-
less visual observations obtained by a multicamera system. We propose
and employ a new method for the temporal segmentation of such motion
data into the periods of dance. Next, we use a beat tracking algorithm
to estimate the pulse related to the tempo of a piece of music. Given an
input music that is of the same genre as the one corresponding to the
visually observed dance, we automatically produce a beat synchronous
dance animation of a virtual character. The proposed approach has been
validated with extensive experiments performed on a data set contain-
ing a variety on traditional Greek/Cretan dances and the corresponding
music.

1 Introduction

Synthesizing realistic human or animal motion is a very important research topic
in computer animation with a high number of applications like virtual reality,
computer games, movies and entertainment systems [1–3]. Motion synthesis al-
gorithms usually should take into account several constraints in order to create
realistic animations that are related with the virtual environment of animation.
For example, to achieve realistic dance animation synthesis, the motion of the
virtual character should synchronize with music. The rhythm of dance music
can be considered to be based on several related periodicities. The periodicity
which is the most convenient to cause a human to move his body is referred to as
the beat. The problem of detecting the beat has recently attracted considerable
research interest [1, 3, 4].

Usually, 3D motion dance data are available e.g. by capturing devices or by
motion synthesis algorithms. So, a problem of a great interest is to synchronize
them to a given dance music. Given proper and automatic synchronization, the
realism of the resulting audiovisual experience is increased. Such a capability
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is also expected to contribute to the development of important applications
regarding the demonstration, study, teaching, spread and preservation of music
and dances.

This paper addresses directly the aforementioned problem when the dance is
periodic, meaning that it consists of repetitive motion patterns. The target case
study considers traditional Cretan dances. Nevertheless, the adopted approach is
applicable to a much broader class of dances. In order to solve the problem, we
employ signal processing techniques for combined music and motion analysis,
that is a vibrant and rapidly evolving field of research [5]. A growing trend
in music and motion analysis is to tackle the problems globally and to exploit,
whenever possible, the multimodal or multi-faceted aspects of music and motion.

A lot of research has been already devoted to the motion analysis of dance
videos in order to estimate the rhythm of motion. In [6], a method of rhythmic
information extraction from dance videos and music has been proposed. The
rhythm of motion is estimated by the analysis of motion trajectories of points
that are detected using an adaptation of the Shi-Tomasi (ST) corner detector [7].
Since the 2D visual information is not always sufficient to solve the problem of
motion rhythm estimation with high accuracy, other methods [4] have been ap-
plied to 3D motion capture data. The method in [4] first detects rapid directional
change of joints, estimating candidate beats and then transform this informa-
tion to continuous motion signals using sequential cosine functions. Finally, the
power spectrum density of signals is analyzed to estimate the dominant period.

In [8], two methods have been presented for segmenting periodic human mo-
tion capture data for mobile gait analysis. The first method is a model-based
algorithm which operates directly on the joint angles detecting local minima and
maxima. By considering pairs of successive minima and maxima, it is possible
to identify distinct intervals in a periodic motion. However, this method suffers
from some limitations, as it might still be possible to get conflicting segmenta-
tion sets between different joints. In such cases, deciding which joint produces
more reliable results is a difficult task. The second method is a model-free, La-
tent Space algorithm, a dimensionality reduction method which first aggregates
all the sensor data and transforms them into an 1D signal. Finally, the segmen-
tation is given by the detection of local minima and maxima in the resulting 1D
signal.

Beat detection in music aims at automatic estimation of the time instances
where a human listener would tap his foot to the music. There have been sev-
eral methods presented over the last decades. The approach of Klapuri [9] is
widely considered as a state-of-the-art approach. While in the years after the
publication of [9] quite innovative approaches were presented (e.g. [10]), no large
improvement in general accuracy has been observed. As we aim at synchronising
dance movement with audio signals in the context of traditional dances, we will
apply the modification of the Klapuri method as proposed in [11]. This modi-
fication uses a signal representation derived from phase characteristics as input
to a beat tracker similar to [9], which was shown to improve the alignment of
the beat sequence to the audio signal in the case of traditional dances [11].
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The beat detection in music has been used by several methods that aim to
create new unseen dance animations that are synchronized with a given mu-
sic [1,3]. In [1], a fast, greedy algorithm analyzes a library of stock motions and
generates new sequences of movements that were not described in the library.
The greedy algorithm with backtracking tries to find the best matching frame
among the closest dance moves, take it as a greedy choice and repeats the same
process. A second, genetic algorithm tries to optimize the dance sequence by
taking a number of valid random dance figures as a population and applies the
genetic operators of crossover and mutation to create new generations. In [3], the
generation of dance performances is based on a given musical piece by matching
the progressions of musical and motion patterns and by correlating musical and
motion features. The proposed method uses similarity matrices for musical and
motion sequences and matched the progressions of musical and motion contents
by minimizing the difference between the two similarity matrices.

Most of the existing approaches that try to provide a temporal segmentation
of human motion are heuristic and use simplifications or signal approximations
without any global optimality criterion. Many approaches based on visual infor-
mation use 2D tracking data and suffer from visual limitations like occlusions
and noise. In addition, many approaches can be only applied to simple human
motions (e.g. walking), where the period can be defined by the local minima
and maxima of the signal. Moreover, certain methods synthesize new unseen
animations that are synchronized with a given music.

On the contrary, in this paper, instead of creating new unseen animations
(that usually requires a high number of 3D motion datasets), we solve the prob-
lem of synchronizing the 3D motion of a given dance with a given music. We
have proposed an optimization approach that computes the optimal solution for
the problem of temporal segmentation of human motion using 3D dance motion
data. An advantage of the proposed method is that it can be applied to complex
multidimensional signals such as those representing dance movements. We also
apply an autocorrelation based criterion in order to segment the music signal
into periods. This information is then used to produce beat synchronous dance
animations. The experimental results show that the proposed method achieves
very promising results. It should be also noted that the input to the algorithm
is not marker-based motion capture data but rather data produced by a home-
build markerless human articulation tracking data. In that sense, the proposed
approach is also capable of tolerating noise in the representation of human mo-
tion.

The rest of the paper is organized as follows. Section 2 gives a brief overview
of the proposed approach. Sections 3, 4 and 5 present the details of the three
main building blocks of the proposed method, that is, temporal segmentation of
periodic human motion, music beat detection algorithm and beat synchronous
dance animation creation, respectively. The experimental results are given in
Section 6. Finally, a summary of this work and the main directions of future
work are provided in Section 7.
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Fig. 1: Scheme of the proposed system architecture.

2 Overview of the Proposed Approach

An overview of the proposed approach is illustrated in Fig. 1. The input to our
method consists of (a) motion capture data, that is, the 3D position, orientation
and articulation of the body parts of a human dancer while dancing a particular
periodic dance and (b) the acoustic signal of a music that is compatible to that
dance genre. The goal is to animate automatically a virtual/synthetic character
who dances according to (a) but is also synchronized to the rhythm of (b). To
achieve this result, the proposed approach employs three building blocks. The
first one consists of an efficient algorithm for the temporal segmentation of the
complex human motion capture data into the periods of dance. The second
building block segments the acoustic signal into parts of duration equal to the
music tempo period. Finally, a motion resampling algorithm is responsible for
remapping each period of the motion capture data according to the estimated
music tempo and for producing the beat synchronous dance animation. The
following three sections present these building blocks in more detail.

3 Temporal Segmentation of Periodic Human Motion

The input to the temporal segmentation of human motion is the time series of
the joint angles of an articulated human model. These joint angles are estimated
by a recently proposed method [12] that relies on markerless, multicamera ob-
servations of a moving person. The employed method estimates accurately the
parameters of an articulated human body model that has 11 joints and a total
of 29 degrees of freedom.

Let S ∈ �m,n be the given multidimensional signal of captured human motion
that contains the time series of the m = 29 degrees of freedom (i.e., joint angle)
of the human motion. Let also n be the number of temporal samples of each
of these series. Si(j) denotes the j-sample of i-angle time series, i ∈ {1, ...,m},
j ∈ {1, ..., n}. Assuming that the human motion (dance in our case) is periodic,
the goal of temporal segmentation is to segment S into its periods. Let Tp =
{t0, t1, t2, ..., tp}, 1 = t0 < t1 < t2 < ... < tp ≤ n be a temporal segmentation of
S into p segments. For each such segmentation, we define the following energy
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function

E(Tp) =
m∑

i=1

p−1∑

k=1

d(Si(tk−1 : tk − 1), Si(tk : tk+1 − 1)). (1)

In Eq.(1), d(., .) denotes a function that computes the distance between the
signal segments Si(tk−1 : tk−1) and Si(tk : tk+1−1). In this work, the Pearson’s
distance [13] is used to implement d(., .). The Pearson’s distance is defined based
on Pearson’s linear correlation coefficient C(x, y) between the signals x, y, i.e.,

d(x, y) = 1− C(x, y), (2)

which is minimized when the signals’ autocorrelation is maximized. Since the
number of samples of each segment are not necessary equal, in order to estimate
the autocorrelation between Si(tk−1 : tk − 1) and Si(tk : tk+1 − 1), d(x, y) is
estimated through a uniform resampling of the signal Si(tk : tk+1 − 1), so that
the resulting signal consists of tk − tk−1 samples.

According to our problem definition, it holds that the optimal temporal seg-
mentation should minimize the energy E(Tp) of Eq.(1). Thus, the temporal seg-
mentation of the human motion amounts to estimating the segmentation Tp with
this property.

An extra complication arises by the fact that in the application domain we
consider, the duration of each period slightly changes over the time. This means
that for all i ∈ {1, ..., p} there exists a small positive value α (e.g. α < 0.1) such
that

(i− α) · n
p

≤ ti ≤ (i+ α) · n
p

. (3)

The quantity n
p corresponds to an upper bound estimation of the mean period

of the motion signal. Then, the proposed method for temporal segmentation
consists of two steps:

– Estimation of the number of periods p.

– Estimation of the optimal Tp under the assumption that the signal consists
of p periods.

The number of periods p can be automatically computed by getting the global
maximum of the amplitude signal of Fast Fourier Transform of a given motion
signal. p can be also estimated by the music beat detection (see Section 4) under
the assumption that the source music corresponding to the given dance motion
signal is available. Alternatively, p can be given by the minimization of mean of
E(T̂s) over the periods, where T̂s denotes the uniform time segmentation into s
periods. This means that the duration of each period is equal to n

s . We restrict
the search space to periods between 0.25s and 1.25s, which relates to the range
of possible tempo in music. In notation,

p = argmins≥2
E(T̂s)

s
. (4)
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Fig. 2: The proposed temporal segmentation of the left and right knee angles.

Having estimated the number of periods p (see Eq. (4)), the goal of the
proposed method is to find the segmentation Tp that minimizes E(Tp) under the
constraint of Eq.(3). Let D(u, v), v > u be a metric that measures how periodic
is the signal segment that corresponds to the time interval [u, v]. D(u, v) takes
its minimum value of zero if the segment from u to v is periodic. According to
the definition of E(Tp) (see Eq.(1)), D(u, v) is given by

D(u, v) = min
−α≤ψ≤α

m∑

i=1

d(Si(u : v − 1), Si(v : w)), (5)

where w = v − 1 + �(1 + ψ) · (v − u)�. In order to reduce the computation cost
(see also the constraint of Eq. (3)) D(u, v) is computed according to Eq. 5 only

when (1−2α)·n
p ≤ v − u ≤ (1+2α)·n

p . Otherwise, D(u, v) is set to ∞.

Then, we construct a graph G as follows. A node u ∈ {1, ..., n} of G corre-
sponds to the time instance u. The weight of edge u ∼ v is given by D(u, v).
Finally, we add the virtual node n + 1 that is connected with the last time
instances {	n − α · np 
, ..., n} with an almost zero weight, since we don’t know

the end of the signal periods. Then, the global minimum of E(Tp) under the
constraint of Eq.(3) is given by the sum of weights of the shortest path between
the nodes 1 and n + 1. The nodes (time instances) of the shortest path corre-
spond to the optimal solution for the problem of signal segmentation. Using the
Dijkstra’s algorithm [14], the time complexity for the shortest path computa-
tion is O(log(N) ·E), where N and E are the number of nodes and edges of G,
respectively. This cost can be reduced to O(Nlog(N)), since E = O(N) due to
the constraint of Eq.(3).

Figure 2 illustrates the proposed temporal segmentation using as input the
angles of the left and right knees of a dancer dancing the traditional Cretan
dance “Siganos” (see Section 5). As it can be observed, although the signals are
quite complex and exhibit some small differences in period synchronization, the
proposed method successfully segments both of them.
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4 Music Beat Detection

As our main focus lies upon the synchronization of movement data to a music
signal of a traditional dance, we apply a beat tracking algorithm that was tailored
towards specific properties of the music signals at hand [15]. The central aspect of
the method presented in [11] is the usage of group delay defined as the derivative
of the phase spectrum over frequency. The method takes advantage of the fact
that the average group delay, also referred to as phase slope function, can provide
insight about the position of impulses that are caused by note onsets. The phase
slope function is used to obtain a signal representation, which emphasizes time
instances of instrument note onsets and can be used to track the beat in a music
signal. The parameters of the phase slope computation are the same as those
presented in [11]. Onset candidates are determined separately in four frequency
bands, which results in four band-wise onset signals yc[n], c = 1...4.

For the estimation of beat times from the band-wise onset signals, an algo-
rithm based on the method proposed by Klapuri et al. [9] has been used. The
algorithm first determines a tempo trajectory for a piece of music, and then
aligns a sequence of impulses having a period related to that tempo to the music
signal. The tempo trajectory is obtained by computing a weighted sum of yc[n]

y[n] =

4∑

c=1

(6 − c)yc[n] (6)

and then, by weighting y[n] with the spectral flux at each sample n:

yflux[n] = y[n]
∑

ω

HWR(|X(ω, n)| − |X(ω, (n− 1))|). (7)

In Eq.(7), HWR denotes a half wave rectification and X(ω, n) denotes the (short
time) Fourier transform of the signal as used in the group delay computation.
In order to obtain a set of tempo periods, the sample autocorrelation of yflux[n]
is computed in rectangular windows of twin = 8s length with a hop size of 1s.
The obtained sequence of autocorrelation vectors describes the development of
rhythmic content over the duration of a piece. In the following, the tempo periods
β have been estimated using a Hidden Markov Model(HMM) as described in [9].
This results in a sequence of beat period estimations β[k], with k = 1...N , with
N being the number of autocorrelation vectors for a piece.

In order to align a beat pulse with the signal, we compute the likelihood of
an alignment phase Φ[k] in analysis frame k

P (r̂ỹy|Φ[k] = l) =

4∑

c=1

(6− c)

8fo∑

n=0

ỹk[n+ l]yc[(k − 4)fo + n] (8)

where ỹk is a reference pulse train of twinfo + 1 samples length, having an
impulse at the middle position and a period equal to β[k]. Thus, just like in the
estimation of the beat period, an eight second length window has been used.
The weighted sum of the band wise correlations as computed in (8) is then used
in an HMM framework as suggested in [9].
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MSig1 MSig2 MAl1 MSyr1 MSyr2
794 - 827 682 - 710 570 - 571 388 - 450 388 - 400

Table 1: The number of frames for the beat synchronous dance animations.

5 Beat Synchronous Dance Animation

Having segmented the given human motion and music into periods, the next task
is to create a beat synchronous dance animation. To achieve this, we resample
the motion signal so that it becomes equal to the target music tempo. More
specifically, let Tp = {t0, t1, t2, ..., tp} and T ′

p = {t′0, t′1, t′2, ..., t′p} be the temporal
segmentations of the human motion and target music signals, respectively. In
order to get beat synchronous dance animation, the i-segment [ti, ti+1] of the

motion signal should be resampled with ri =
t′i+1−t′i
ti+1−ti oversampling rate. If ri = 1,

then there are no changes in the resulting motion signal. In order to avoid rapid
changes on sampling rate on the borders of segments, a continuous oversampling
rate r(t) at time t ∈ [ti, ti+1] of the motion signal can be used, which is defined
as

r(t) =

∑1
k=−1 w(t, i + k) · ri+k
∑1

k=−1 w(t, i+ k)
, (9)

where δ =
tp−t0
p is equal with the mean period of motion signal. In Eq.(9),

w(t, k) = exp(
−2·(t−(ti+k+ti+k+1)/2)

2

δ2 ). In addition, the application of r(t) keeps
the animation beat synchronous.

6 Experimental Results

The proposed method has been evaluated on a data set consisting of several
traditional Greek/Cretan dances. A professional dancer has performed a variety
of such dances. His performance was recorded by a fully calibrated and syn-
chronized multicamera system operating at 25Hz. Three types of dances were
investigated, namely “Siganos”, “Maleviziotis” and “Syrtos” which are danced
in 6, 8 and 12 steps, respectively. Like most of traditional Cretan dances, a theme
can be repeated with a practically infinite number of variations. The articulated
motion of the dancer was tracked with a recently proposed method [12], which
estimates the 3D position, orientation and full articulation of the human body
based on the markerless observations provided by the camera system.

We employed motion recordings of Siganos (MSig1,MSig2), Maleviziotis
(MMal1) and Syrtos (MSyr1,MSyr2). The number of temporal samples of
MSig1, MSig2, MMal1, MSyr1,MSyr2 is 750, 638, 658, 445 and 417, respec-
tively.

Each of these recordings has been synchronized using two audio recordings of
different tempos. We have used two audio recordings for each dance type: Siganos
(ASig1, ASig2), Syrtos (ASyr1, ASyr2) and Maleviziotis (AMal1, AMal2), re-
spectively. Table 1 presents the number of frames of the beat synchronous dance
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Fig. 3: ((a) - (e)) Frames of synchronized dance animation for MSig2 under ASyr1.
((f) - (j)) Frames of synchronized dance animation for MSyr2 under ASyr2.

animations using the two corresponding audio recordings. So, the number of
frames of MSig1 with ASig1 and ASig2 is 794 and 827, respectively. Fig-
ures 3(a)-3(e) and 3(f)-3(j) show sample frames where the motion of MSig2
was aligned to the music of ASig1 and the motion of MSyr2 was aligned to
the music of ASyr2, respectively. A more complete set of video results con-
taining ten beat synchronous dance animation videos can be downloaded at
http://alturl.com/64ihx. As it can be verified, the proposed framework pro-
vides beat synchronous dance animations of good quality, in all tested cases.

7 Conclusions

In this work, we proposed a framework that generates beat synchronous dance
animation combining complex human motion capture data with an audio signal
of a target music. The proposed approach has been successfully tested on variety
of dances containing cyclic activities such as traditional Greek/Cretan dances.
The proposed method yields the optimal solution for the problem of temporal
segmentation into periods of multidimensional signal applied on complex human
motion data such as dance movements. Regarding future work, we plan to apply
the temporal signal segmentation to other types of periodic signals (e.g. ECG
or geophysical signals) in order to segment them into periods. Moreover, the
proposed method can be used as a last part of a motion synthesis scheme. Thus,
by providing audio input only, the envisioned system will be able to provide new
unseen motions of beat synchronous realistic animations of a virtual dancer.
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