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Abstract

In this paper, we propose a framework for interactive image segmentation. The

goal of interactive image segmentation is to classify the image pixels into fore-

ground and background classes, when some foreground and background markers

are given. The proposed method minimizes a min-max Bayesian criterion that has

been successfully used on image segmentation problem and it consists of several

steps in order to take into account visual information as well as the given markers,

without any requirement of training. First, we partition the image into contigu-

ous and perceptually similar regions (superpixels). Then, we construct a weighted

graph that represents the superpixels and the connections between them. An effi-

cient algorithm for graph clustering based on synthetic coordinates is used yielding

an initial map of classified pixels. This method reduces the problem of graph clus-

tering to the simpler problem of point clustering, instead of solving the problem on

the graph data structure, as most of the known algorithms from literature do. Fi-
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nally, having available the data modeling and the initial map of classified pixels, we

use a Markov Random Field (MRF) model or a flooding algorithm to get the image

segmentation by minimizing a min-max Bayesian criterion. Experimental results

and comparisons with other methods from the literature are presented on LHI,

Gulshan and Zhao datasets, demonstrating the high performance and accuracy of

the proposed scheme.

Keywords: image segmentation, interactive image segmentation, network

coordinates, community detection, Markov Random Field

1. Introduction

Image segmentation is a key step in many image-video analysis and multime-

dia applications. Segmentation of color textured images has become a necessity

for many applications, such as content based image retrieval, object recognition-

tracking [1] and in 3D modeling [2].

The objective of image segmentation is to extract the foreground objects out

of the cluttered background. Typically, it is used to partition images into regions

that are in some sense homogeneous, or have some semantic significance, thus

providing high level information about scenes to subsequent processing stages [3].

However, the automatic segmentation problem is ill-posed and complex, as more

than one partition can satisfy generic objective criteria and can be accepted by

human experts. Thus, despite the plethora of methodologies for image segmenta-

tion, a general-purpose algorithm that addresses the whole range of segmentation

problems and applications does not exist.

According to interactive image segmentation, which is a special case of im-

age segmentation, unambiguous solutions, or segmentations satisfying subjective

criteria, could be obtained, since the user gives some markers on the regions of

interest and on the background. Thus, under interactive segmentation, the se-

mantic objects are extracted with high accuracy, since the high-level information

that is needed to traverse the “semantic-gap” between homogeneous regions and

perceived objects is provided by the given markers. Fig. 1 illustrates an example
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Figure 1: (a) Original image, (b), (c) given markers (point and scribble) and (d) the ground

truth image.

of an original image, two types of markers and the segmentation ground truth.

Some algorithms are also sensitive on the shape of the given markers that usually

are points (Fig. 1(b)) or scribbles as in Fig. 1(c).

Automatic and interactive image segmentation have been widely studied in the

literature. Most of image segmentation algorithms satisfy a subset of the following

constraints yielding valid segmentations [1]:

• Edge constraints that refer to correlation between the segmentation bound-

aries and the image edges. In [4], the detection of edges and boundaries is

done using features that correspond to characteristic changes in brightness

and texture associated with natural boundaries, combined with a classifier

that is trained using human labeled images as ground truth. In [5], the pro-

posed segmentation algorithm consists of generic machinery for transforming

the output of any contour detector into a hierarchical region tree, reducing

the problem of image segmentation to that of contour detection.

• Shape constraints lead to boundary regularization, while hard shape condi-

tions, assuming prior knowledge, could address specific rigid or deformable

object localization. In [6], a variational level set framework for segmentation

and tracking of the Left Ventricle has been proposed that can account for

global shape consistency as well as for local deformations.

• Region constraints refer to pixel grouping according to class properties and

similarity criteria. The objective is to obtain regions that are uniform and ho-
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mogeneous with respect to the selected features. This is one of the most sig-

nificant constraints that should be satisfied, especially by the interactive im-

age segmentation algorithms that have a-priory knowledge about the classes

[7].

• Topology constraints should limit the number of connected components. In

[8], a new metric has been proposed that tolerates disagreements over bound-

ary location, penalizes topological disagreements and can be used directly as

a cost function for learning boundary detection.

During the last decade, a large number of interactive image segmentation algo-

rithms have been proposed in the literature. Hereafter, we briefly present some

popular interactive image segmentation algorithms. In [9] hard topological con-

straints are used to reduce the search space of feasible segmentations minimizing

an energy function via max-flow/mincut algorithms. In [10], weighted geodesic

distances to user-provided scribbles are computed, from which the image is auto-

matically segmented. The weights are based on spatial and/or temporal gradients,

considering the statistics of the pixels scribbled by the user. In [11], a new shape

constraint based method for interactive image segmentation has been proposed

using Geodesic paths. The authors introduce Geodesic Forests, which exploit the

structure of shortest paths in implementing extended constraints. The system is

evaluated by means of a “robot user” to measure the amount of interaction required

in a precise way.

In [12], discriminative learning methods have been used to train conditional

models for both region and boundary based on interactive scribbles. In the region

model, the authors use two types of local histograms (histogram of color (HoC)

and histogram of oriented gradients (HoG) [13]) with different window sizes to

characterize local image statistics around a specific pixel. In the boundary model,

the authors use 12-bin boundary features by applying gradient filters (4 different

scales) to each color component. In [2], interactive segmentation has been used

for 3D modeling of urban buildings. Architectural elements (e.g. walls and win-
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dows) are detected using an interactive segmentation algorithm based on Gaussian

mixture models and Expectation Maximization methods.

In [14], a two step segmentation algorithm has been proposed that first obtains

a binary segmentation and then applies matting on the border regions to obtain

a smooth alpha channel. The proposed segmentation algorithm is based on the

minimization of the Geodesic Active Contour energy. In [15], a Level set approach

for interactive segmentation has been proposed that has been tested on grayscale

images. In [16], a Bayesian network (BN) model for both automatic and interactive

image segmentation has been proposed. A multilayer BN is constructed from an

oversegmentation to model the statistical dependencies among superpixel regions,

edge segments, vertices, and their measurements. Image segmentation is generated

by the most probable explanation inference of the true states of both region and

edge nodes from the updated BN.

According to the interactive segmentation algorithm proposed in [7], first, all

the labeled seeds are independently propagated for obtaining homogeneous con-

nected components for each of them. The given scribbles should be of approxi-

mately circular shape. Then, the image is divided into blocks which are classified

according to their probabilistic distance from the classified regions, and a topo-

graphic surface for each class is obtained. Finally, two algorithms (MRF and pri-

ority multi-label flooding) for regularized classification based on the topographic

surface have been proposed. In this research, we have used as well the MRF and

priority multi-label flooding algorithms to classify the initial map.

Most of the approaches from the literature are heuristic, or they try to optimize

a criterion that may not be appropriate for interactive segmentation. Furthermore,

some of them they need specific shape of initial markers, or they require a training

set. The proposed method consists of several steps taking into account visual infor-

mation as well as the given markers, without the requirement of training. Initially,

we construct a weighted graph that represents the superpixels and the connections

between them. The proposed method solves the graph clustering problem using the

synthetic network coordinates that are automatically estimated by a distributed
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Figure 2: Scheme of the proposed system architecture.

algorithm based on interactions between neighboring nodes. The use of network

coordinates reduces the problem of graph clustering to the simpler problem of

point clustering, instead of solving the problem on the graph data structure, as

most of the known algorithms from literature do. Finally, the image segmentation

is provided by a Markov Random Field (MRF) model or a flooding algorithm min-

imizing a min-max Bayesian criterion. This criterion has been also successfully

used in image segmentation problem [7, 1], resulting in higher performance results

when compared to other methods from literature. In addition, in this work there

is no constraint on the shape of initial markers.

The rest of the paper is organized as follows: Section 2 gives the definition of

the interactive segmentation problem and the proposed visual modeling. Sections

3 and 4 present the proposed algorithm. The experimental results are given in

Section 6. Finally, conclusions and discussion are provided in Section 7.

2. Problem Definition

2.1. Overview

The problem of interactive image segmentation that we tackle in this research

is defined as follows: The user provides markers on the regions of interest (fore-

ground) and on the background. Taking into account the initial markers, the goal

is to classify the rest of image pixels into foreground and background classes.
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Figure 3: The description of visual information of Fig. 1(a): (a), (b), (c) The three Lab color

components and (d) the textureness.

Similarly with the interactive segmentation algorithm proposed in [7], the pro-

posed method can be divided into two steps:

• In the first step (see Section 3), we partition the image into superpixels

using the oversegmentation algorithm proposed in [17]. Then, we construct a

weighted graph that represents the superpixels and the connections between

them, taking into account the given markers and visual information. An

initial map of classified pixels is provided by an efficient algorithm for graph

clustering based on synthetic coordinates.

• In the second step (see Section 4), the image segmentation is provided by a

Markov Random Field (MRF) model or a flooding algorithm. These methods

have been proposed in [7].

Fig. 2 illustrates the scheme of the proposed system architecture. Due to this

methodology, high performance results are obtained, without applying any con-

straint on the markers’ shape, number and size (see Fig. 1). Hereafter, we present

in detail the proposed methodology.

2.2. Visual information

In this work, the description of visual content consists of Lab color components

for color distribution and textureness for texture content. This approach has been

also used in [1]. In order to compute textureness [1], we first obtain the principal

image component Y from the three RGB components. Let Ym be the output of a
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Figure 4: Estimated superpixels for the image of Fig. 1(a).

median filter, in our implementation of size 5× 5. The textureness is measured by

applying again the same median filter on |Y −Ym|. Therefore, at every image pixel,

in addition to the three Lab color components, we have a measure of textureness

that is sensitive to local high-frequency content, while respecting strong edges. Fig.

3 depicts the four image components that have been used to describe the visual

information of Fig. 1(a).

3. Coarse Segmentation

3.1. Oversegmentation algorithm

Initially, we partition the image into superpixels using the oversegmentation

algorithm proposed in [17]. This method robustly segments the given image into

small contiguous and perceptually similar (homogeneous) regions, called superpix-

els. In the next steps of our method, we have used superpixels instead of pixels,

since the number of superpixels is sufficiently lower (about 100 times lower) than

the number of pixels and each superpixel belongs either to the foreground or the

background class. Let SP = {si, i ∈ {1, ..., N}} denote the set of N superpix-

els. Fig. 4 illustrates the estimated set SP produced by the oversegmentation

algorithm proposed in [17], for the image of Fig. 1(a).

This initialization is actually the initial step of the proposed algorithm. How-

ever, in the fine segmentation step (see Section 4), we relax the constraint that

each superpixel should belong to either the foreground or the background classes,
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by performing a fine, pixel-level segmentation. Copying with the case that a su-

perpixel contains both a foreground and a background marker, (which is almost

impossible to happen since superpixels are perceptually homogeneous regions with

small area), a solution is to split the superpixel under consideration into two regions

according to the given markers.

3.2. Graph of superpixels

In the next step, we construct a graph G that represents the superpixels and

the connections between them, taking into account the given markers and visual

information. According to the given markers, two superpixels can either be con-

nected, meaning that they belong to the same class or be disconnected, meaning

that they belong to different classes. Thus, the nodes (superpixels) in this graph

are connected with edges of two types in order to take into account the two types

of relations between superpixels:

• the EC edges that connect two superpixels belonging to the same class.

• the ED edges that connect two superpixels belonging to different classes.

In the second step of the algorithm, the visual information and the superpixels’

proximity is used to create the set of edges EC until G becomes a connected graph.

The visual distance dv(si, sj) between two superpixels si and sj, i, j ∈ {1, ..., N} is

given by the Mallows distance [18] of the three color components in Lab color space

and for the textureness measure of the corresponding superpixels (see Equation

1). The distance is efficiently computed under the assumption of independent

data components. For each component, data are sorted and the mean absolute

difference is used to measure the distance [1, 19]. Let Vk(si), k ∈ {1, 2, 3, 4} be the

corresponding sorted vector of the k-th component. The first three components

denote the three color components (Lab) and the last corresponds to textureness.

The superpixel that has the least number of pixels is oversampled, so that the

two vectors Vk(si) and Vk(sj) end up with the same number of elements. In the

special case that a superpixel has more elements than a constant threshold (e.g.
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500), we perform subsampling on the corresponding vector, in order to maintain

the computational cost of O(1) for the estimation of dv(si, sj). Without loss of

generality, let sj be the superpixel with the least number of pixels. Then, the

visual distance dv(si, sj) between two superpixels si and sj is given by the following

Equation:

dv(si, sj) =
1

4 · |si|
4∑

k=1

||Vk(si)− Vk(sj)||1, (1)

where |si| denotes the number of pixels of si and ||.||1 denotes the Manhattan (L1)

norm.

Let G′ be the weighted graph of superpixels, so that two superpixels si and

sj are connected with an edge of weight dv(si, sj) if and only if they are neigh-

bors, meaning that they share a common boundary. Then, the proximity distance

dp(si, sj) between superpixels si and sj is given by the length of the shortest path

from si to sj in graph G′. Since dv(si, sj) is a metric using the L1 norm, due

to the triangular inequality, it holds that dv(si, sj) ≤ dp(si, sj). Using Johnson’s

algorithm [20], it holds that the computational cost to compute all shortest paths

on G′ is O(N · log(N) +N · E) which is simplified to O(N2), since the number of

edges (E) of the graph of superpixels is O(N).

The proposed distance between superpixels si and sj that efficiently combines

the visual and proximity distances is given by Equation 2:

d(si, sj) =
√

dp(si, sj) · dv(si, sj) (2)

The use of the square root on the proximity distance is explained by the fact that

the visual distance is more important than the proximity distance. The product

is selected because d(si, sj) should get high values only if both of the distances get

high values. In addition, dp(si, sj) also depends on the geometric position of the

superpixels in the image and on their visual content dissimilarity, while dv(si, sj)

only depends on their visual dissimilarity. Thus, the use of
√

dp(si, sj) can be

explained as a weight in the Equation, in order to increase the visual distance of

superpixels in case there exist “visual obstacles” between them, even if they are
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similar in visual content. According to this Equation, the distance between two

neighboring superpixels is given by d
3
2
v (si, sj).

The choice of a specific distance formula for Equation 2 is not so crucial, since

dp(si, sj) also depends on visual difference. We have tested alternatives formulas

on LHI dataset like

• d(si, sj) = dv(si, sj)

• d(si, sj) = dp(si, sj)

• d(si, sj) = dp(si, sj) · dv(si, sj)

• d(si, sj) = dp(si, sj) + dv(si, sj)

getting slightly lower performance (between 1% to 4%) compared to Equation 2.

The pseudo-code of the procedure that computes the two sets of edges, EC and

ED for graph G, is given by Algorithm 1. The input of the algorithm is the set

of superpixels SP , the distances d(si, sj) ∀i, j ∈ {1, ..., N} and each intersection

between superpixel si and the given markers marker(si), i ∈ {1, ..., N}. Function

class(.) returns the class (foreground or background) of the given marker pixels.

EC and ED are initialized to the corresponding edges according to the given mark-

ers (see lines 1-12 of Algorithm 1). The N ·(N−1)
2

pairs of distances d(., .) are sorted

and stored in vector vecsorted (see line 20 of Algorithm 1). Finally, we add the

sorted edges of vecsorted on EC set until G becomes a connected graph (see lines

23-31 of Algorithm 1). Conn(si) and Conn(sj) correspond to the degree (connec-

tions) of si and sj, respectively. G should be a connected graph in order to be

able to execute the Vivaldi algorithm [21] that generates the superpixels’ synthetic

coordinates. In order to keep the graph balanced (almost equal degree per node)

with respect to the nodes’ degree, we have used an upper limit on node degree

(MaxConn = 10). In Section 6.1, we report some experiments that show how the

performance of the proposed framework is affected by the choice of MaxConn.

The method has computational cost O(N2 · log(N)).
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input : SP = {si, i ∈ {1, ..., N}}, d(., .), marker(si), i ∈ {1, ..., N}
output: EC , ED

EC = ED = ∅1

for i = 1 to N do2

for j = i + 1 to N do3

if marker(si) �= ∅ ∧ marker(sj) �= ∅ then4

if class(marker(si)) == class(marker(sj)) then5

EC = EC ∪ (si ∼ sj)6

else7

ED = ED ∪ (si ∼ sj)8

end9

end10

end11

end12

vec = ∅13

for i = 1 to N do14

for j = i + 1 to N do15

vec = vec ∪ (si, sj )16

end17

end18

vec = vec − ED − EC19

vecsorted = sort(vec, d(., .))20

L =
N·(N−1)

2
21

MaxConn = 1022

for k = 1 to L do23

(si ∼ sj) = vec(k)24

if G(SP,EC ∪ ED)is Connected then25

return26

end27

if max(Conn(si), Conn(sj)) < MaxConn then28

EC = EC ∪ (si ∼ sj)29

end30

end31

Algorithm 1: The graph construction algorithm.
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3.3. Synthetic coordinates

Network coordinate systems were designed to predict latencies between Inter-

net hosts, without the need for explicit measurements using probe queries. These

algorithms assign synthetic coordinates to hosts, so that the distance between two

hosts’ coordinates provides an accurate latency prediction between them. This

technique provides to applications the ability to predict round trip time with less

measurement overhead than probing. Vivaldi [21] is a fully decentralized, light-

weight, adaptive network coordinate algorithm that predicts Internet latencies with

low error. Vivaldi uses the Euclidian coordinate system (in n-dimensional space,

where n is a parameter) and the associated distance function. In our implementa-

tion, we have used n = 20. It holds that n should be high enough for the Vivaldi

algorithm to be able to place the points in �n so that the point distances are satis-

fied. On the other hand, if n is too high (e.g. analogous to the number of points),

this will make the system to be over-learned. In addition, this will (linearly) in-

crease the computational cost of Vivaldi algorithm. We have reported (see Section

6.1) some experiments that show that the performance of the proposed framework

is slightly affected by the choice of n.

Conceptually, Vivaldi simulates a network of physical springs, placing imagi-

nary springs between pairs of network hosts [22]. The Vivaldi algorithm is quite

efficient concerning its computational cost since it is a distributed algorithm [22].

It can be executed in O(N · n) when a centralized implementation is used.

Each node x participating in Vivaldi maintains its own coordinates p(x) ∈ �n

(the position of node x that is a point in the n-dimensional space). Initially, all

node coordinates are set at the origin. Periodically, each node communicates with

another node (selected among a small set of nodes known to it). Each time a

node communicates with another node, it measures its distance and learns that

node’s coordinates. Subsequently, the node allows itself to be moved a little by the

corresponding imaginary spring connecting them. When Vivaldi converges, any

two nodes’ Euclidian distance will match their actual distance, even though those

nodes may never had any communication.
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In our case, the input to the Vivaldi algorithm [21] is a weighted graph, where

the weights correspond to the nodes distances in a virtual n−dimensional Euclidean

space. We have used the weights 0.0 and 1000.0 for EC and ED, respectively.

These weights correspond to the Euclidean distance between the virtual position

of superpixels, that is used by the Vivaldi algorithm [21] to position the superpixels

in a virtual space (the n−dimensional Euclidean space �n) generating synthetic

coordinates. It holds that when the algorithm converges the Euclidean distance

of any two superpixel positions approximates the actual distance between those

superpixels (edge weight). In other words, superpixels (nodes) of the same class

will be placed closer in space than superpixels of different classes, thus forming

natural clusters in space. Although in the original application of Vivaldi, the actual

distances were the latencies between Internet hosts, recently, we have successfully

applied Vivaldi on the problem of locating communities on real and synthetic

dataset graphs [23, 22].

3.4. Initial map of classified pixels

Having estimated a synthetic coordinate (position) p(si) ∈ �n for each super-

pixel si, i ∈ {1, ..., N} of the graph, we can use a clustering algorithm in order to

cluster a subset of superpixels into foreground and background classes, providing

this way an initial map of classified pixels Map. The proposed algorithm creates

the initial map by merging the superpixels that have been placed in proximity

in �n, meaning that they should belong to the same class. In this research, we

have used a hierarchical clustering algorithm that recursively finds clusters in an

agglomerative (bottom-up) mode.

The pseudo-code of this method, which classifies a subset of superpixels into

foreground and background classes, providing Map, is given in Algorithm 2. The

input of the algorithm is the set of superpixels SP and the position of superpixels

produced by Vivaldi. The function marker(si) returns the intersection between

superpixel si and the given markers and function class(.) returns the class (fore-

ground or background) of the given marker pixels.
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input : SP = {si, i ∈ {1, ..., N}}, p(.)
output: Map(.)

NumClusters = 0, IC = INC = ∅1

for i = 1 to N do2

if marker(si) �= ∅ then3

IC = IC ∪ {si}, Map(si) = class(marker(si))4

else5

INC = INC ∪ {si}, Map(si) = UNKNOWN6

end7

end8

for i = 1 to |IC| do9

for j = 1 to |IC| do10

Dist(i, j) =

⎧⎨
⎩

|p(si) − p(sj)|2 , j > i

∞ , j ≤ i11

end12

end13

Dist1D = sort1D(Dist)14

set = {i ∈ {2, ..., |IC|·(|IC|−1)
2

} : Dist1D(i) ∈ [100, 300]}15

T = 20016

if |set| > 1 then17

T = Dist1D(argmax(Dist1D(set)− Dist1D(set − 1)) + set(1))18

end19

i = 1, ICM = [1 : |IC|]20

while Dist1D(i) < T do21

[u, v] = {(a, b) : Dist(a, b) = Dist1D(i)}22

if Map(su) = Map(sv) then23

set1 = {k ∈ {1, ..., |IC|} : ICM(k) = ICM(u)}24

set2 = {k ∈ {1, ..., |IC|} : ICM(k) = ICM(v)}25

C1 =

∑
i∈set1 A(i)·p(IC(i))∑

i∈set1 A(i)26

C2 =

∑
i∈set2 A(i)·p(IC(i))∑

i∈set2 A(i)27

if |C1 − C2|2 < T then28

ICM(set2) = ICM(v)29

end30

end31

i = i + 132

end33

ICMU = unique(ICM)34

for i = 1 to |ICMU| do35

set = {k ∈ {1, ..., |IC|} : ICMU(i) = IC(u)}36

C =

∑
i∈set A(i)·p(IC(i))∑

i∈set A(i)37

for j = 1 to N do38

D(i, j) = |C − p(sj )|239

end40

end41

D1D = sort1D(D), i = 142

while D1D(i) < T do43

[u, v] = {(a, b) : D(a, b) = D1D(i)}44

c = class(marker(sICMU(a)))45

if Map(sv) = UNKNOWN then46

Map(sv) = c47

end48

i = i + 149

end50

Algorithm 2: The proposed graph clustering algorithm.
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Map is initialized according to the given markers (see lines 2-8 of Algorithm 2).

Firstly, we merge the labeled points of the same class (foreground or background)

according to their distances (see lines 9-34 of Algorithm 2) in order to reduce the

number of clusters. When two clusters c1 and c2 are merged, we replace them by

a new cluster that is placed in the mass mean of c1 and c2 (see lines 26, 27 and

37 of Algorithm 2). This means that its synthetic coordinates are given by the

weighted mass mean of c1 and c2 taking into account the number of points of c1 and

c2. Then, the distances between the labeled clusters and the unlabeled points are

computed (see lines 35-41 of Algorithm 2). The proposed method sorts the unla-

beled points (superpixels) according to their distance from the labeled clusters (see

line 42 of Algorithm 2). Thus, we start with each point as a separate cluster with

“UNKNOWN” label and we successively merge a cluster c1 with “UNKNOWN”

label with the closest labeled cluster c2, if the distance between c1 and c2 is lower

than a predefined threshold T according to their synthetic coordinates. If no such

pair of clusters exists, the algorithm terminates.

T is computed by the histogram of distances between all points’ pairs that

belong in the range [100, 300] (see lines 16-19 of Algorithm 2). The default value

for T is 200. We have used these values, since it holds that the distance between

the points of the same class is close to zero and between the points of different

classes is close to 1000.0 (see Section 3.3). Therefore, T is given by the value that

better discriminates the two distributions (distances between points of the same

class and between points of different classes) from the histogram of distances. The

computational cost of the proposed clustering algorithm is O(N2 ·n+N2 · log(N)),

due to the computation of the distances between all points’ pairs and to the sorting

phase.

4. Fine Segmentation

4.1. Postprocessing of initial map

The graph clustering algorithm constructs an initial map of classified pixels.

Usually, it holds that the image borders and especially the pixels close to the four
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image corners belong to the background class. We have used the following simple

rule that takes into account this property, providing a new initial map of classified

pixels. A pixel is classified to background class if it belongs to an unclassified

superpixel and

• its distance from the closest image border is less than 1% of image diagonal

• its distance from the closest image corner is less than 7% of image diagonal.

Using the criterion of ”unclassified superpixel” the proposed heuristic works well in

cases where an object intersects the image boundary. Finally, we perform erosion

on the classified superpixels using a disk of 2 pixels radius, in order to be able to

correct some boundary errors of the oversegmentation algorithm.

4.2. A min-max classification criterion

This section describes the proposed criterion that has been used in the fine

segmentation step. This criterion has been also used in [7, 1]. Let S =
⋃L

l=1 Sl

be the set of those initially classified pixels estimated by the graph clustering

algorithm described in Section 3.4. For any unclassified pixel s we can consider

all the paths linking it to a classified set or region. A path Cl(s) is a sequence of

adjacent pixels {s0, ..., sn−1, sn = s}. It holds that all pixels of the sequence are

unlabeled, except s0 which has label l. The cost of a particular path is defined

as the maximum cost of a pixel classification according to the Bayesian rule and

along the path

Cost(Cl(s)) = max
i=1...n

dBl (si) (3)

Therefore, for each l, a topographic surface on a discrete grid is defined, con-

sidering 4-connected pixels. The initially classified pixels are defined to be at zero

level, while the height of the unclassified pixels is given by the Bayesian rule.

Finally, the classification problem becomes equivalent to a search for the short-

est path given the above cost, since we can define the distance of any unclassified

pixel from the different classes as being the lowest height to climb for reaching site
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s,

δl(s) = min
Cl(s)

Cost(Cl(s)) (4)

Therefore the decisions are topologically constrained. If we consider the graph of

unclassified sites with four-connections and the classified connected components,

we can define an edge weight as follows,

w(si−1, si) = max(dBl (si−1), d
B
l (si)) (5)

The paths defined by Equation 5 belong to the MST of the graph defined above

and the computation of δl(s) necessitates the construction of this MST [24]. In

the next two Subsections, two algorithms based on the principle of the min−max

Bayesian criterion for classification, are briefly presented. These algorithms have

been proposed in [7, 1].

4.3. Image segmentation using MRF (ILFMA)

According to the Independent Label Flooding MRF-based mininization Algo-

rithm (ILFMA), at first, distances δl(s) of Equation 4 are computed by L inde-

pendent flooding procedures. The initially classified pixels, composing spatially

connected regions, are grown by iteratively considering neighboring pixels. The

growing procedure is applied to compute the distances δl(s). Among all neighbor-

ing pixels in set Sl that are unclassified and of unknown distance from label l, the

nearest pixel is found, according to Equation 4. Growing proceeds until no more

pixels can be added to the expanding regions, because their propagating contour

reaches only pixels with different initial labels.

Given the region growing measurements derived in Equation 4, we then propose

to optimize a discrete MRF in order to decide what the final class labels should

be. In this manner, we aim at capturing the local interactions between pixels,

which will help us refine and correct the class labels that were assigned during the

previous stage of the algorithm. The problem can be formulated as follows: we

seek to assign a class label ls (from a discrete set of class labels L) to each node
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s ∈ V of a lattice graph, so that the following energy (E) is minimized:

E =
∑
s∈V

δl(s) +
∑

(s,z)∈ε
w(ls, lz) (6)

where ε is the set of graph edges.

To minimize the MRF energy E, we make use of the primal-dual method

proposed in [25], which casts theMRF optimization problem as an integer program

and then makes use of the duality theory of linear programming in order to derive

solutions that have been proved to be almost optimal.

The theoretical worst-case complexity for the MRF optimization algorithm is

O(M2) [26]. In practice, the above optimization method is extremely fast (see

[26], [27] for a comparison with the state-of-the-art methods) and furthermore it

provably provides solutions that are extremely close to the optimum for a wide

class of NP-hard energies. For the problems considered in this paper, the typical

running time of the above algorithm was not more than a second per image.

4.4. Image segmentation using flooding algorithm (PMCFA)

The Priority Multi-Class Flooding Algorithm (PMCFA), that is analytically

described in [1], imposes strong topology constraints. All initially classified re-

gions are propagated simultaneously and most likely decisions are taken as soon

as possible. All the contours of initially classified regions are propagated towards

the space of unclassified image pixels, according to similarity criteria, which are

based on the class label and the segmentation features. Contour pixels s are sorted

according to their dissimilarity δl(R)(s) from the class label l(R) of regions R they

adjoin and at each step, a group of contour pixels of minimum dissimilarity are set

to the label of the class to which they most probably belong. The implementation

of the flooding algorithm uses quantization of distances and priority lists to obtain

a quasi-linear computational complexity [1].
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Figure 5: The number of superpixels and the corresponding square root of image pixels.

5. Computational Complexity

This section provides the analysis of the computational cost of the proposed

scheme. Let M and N denote the number of image pixels and superpixels, respec-

tively.

• The computational cost of the first step of the oversegmentation algorithm

(see Section 3) is O(M · log(M)) [17].

• The construction of the weighted graph and the execution of Vivaldi algo-

rithm have O(N2 · log(N)) and O(N · n) computational costs, respectively

(see Sections 3.2 and 3.3). This means that the total cost of this part is

O(N2 · log(N)), since n << N .

• The computational cost of the graph clustering based on synthetic coordi-

nates is O(N2 · n +N2 · log(N)) (see Section 3.4).

• Finally, the image segmentation is provided by a Markov Random Field

(MRF) model or a flooding algorithm (see Section 4). The computational

cost for the flooding algorithm is quasi-linear [7, 1]. In the worst case, the

computational cost for the Markov Random Field (MRF) based algorithm is

O(M2) (worst case) [26].
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Therefore, the computational complexity of the proposed scheme is O(M ·log(M)+

N2 · n +N2 · log(N)), when the flooding algorithm is used. However, the number

of superpixels is sufficiently lower than the number of pixels. Fig. 5 depicts the

number of superpixels and the corresponding square root of image pixels (
√
M)

computed on 222 images that have been used in the experimental results (see

Section 6). Moreover, we have plotted functions f1(x) =
√
x and f2(x) = 1.5 ·

√
x using black dashed and red dashdot lines, respectively. According to this

experiment, it holds that the 90% of cases have N lower than
√
M , while under

any caseN is lower than 1.5·√M . Consequently, the assumption thatN = O(
√
M)

is true and the total computational cost of the proposed scheme is simplified to

O(M · (n+log(M))), when the flooding algorithm is used. On the other hand, the

computational complexity of the proposed scheme is simplified to O(M2), when

the Markov Random Field (MRF) model is used.

6. Experimental Results

We have tested our method on the following three datasets (LHI, Gulshan

and Zhao interactive segmentation benchmarks). SGC-ILFMA and SGC-ILFMA

have been compared with algorithms from the literature according to the reported

results of [12], [11] and [28].

• The LHI interactive segmentation benchmark [29, 30]. This benchmark con-

sists of 21 natural images with ground-truths and three types of users’ scrib-

bles for each image. This means that 63 different segmentation results have

been obtained (see Section 6.2).

• The Gulshan interactive segmentation benchmark that consists of 151 natural

images used in [11]. The Gulshan dataset consists of the GrabCut dataset

(49 images) augmented with images from the PASCAL VOC09 segmentation

challenge (99 images) and 3 images from the alpha-matting dataset [11] (see

Section 6.3).
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• The Zhao interactive segmentation benchmark [28]. The dataset is composed

of five categories(animal, artifact, building, human, plant). Each category

contains 10 representative images (see Section 6.4). So, this benchmark con-

sists of 50 natural images with ground-truths and four types of users’ scribbles

for each image. This means that 200 different segmentation results have been

obtained.

Similarly with [12], in order to measure the algorithms’ performance two eval-

uation criteria of accuracy have been used: the Region precision (RP ) and the

Boundary precision (BP ). Let SR and GT denote a segmentation result and a

ground truth image, respectively. RP is defined as the fraction of the number of

pixels that belong to the intersection of SR and GT (|SR ∩ GT |) divided by the

number of pixels that belong to the union of SR and GT (|SR ∪GT |).

RP =
|SR ∩GT |
|SR ∪GT | (7)

RP measures an overlap rate between a result foreground and the correspond-

ing ground truth foreground. A higher RP indicates a better segmentation re-

sult, while the optimal segmentation is achieved when RP = 1, a value, which

is obtained when SR = GT . BP calculates an inverse Chamfer distance [12, 31]

between a result contour BSR and the corresponding ground truth contour BGT :

BP =
1

D(BSR,BGT )
(8)

D(BSR,BGT ) =
1

|BSR| ·
∑

u∈BSR

min
v∈BGT

|u− v|2 (9)

where |BSR| denotes the number of pixels of result contour BSR. It holds that

higher BP values correspond to better segmentation results. In Equation 8, it

appears that a division by zero possible if the boundaries align exactly. A solution

on this problem is to set BP = 2 · |BSR|, only if D(BSR,BGT ) = 0. Since, when

D(BSR,BGT ) > 0, the maximum value of BP is |BSR|.
In what follows, the proposed methods using the Markov Random Field (MRF)

model and the flooding algorithm are denoted as SGC-ILFMA and SGC-PMCFA,

respectively.
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Figs. 6, 7, 8 depict intermediate (initial map of classified pixels) and final

segmentation results of the proposed methods (SGC-ILFMA and SGC-PMCFA) on

several images of the LHI, Gulshan and Zhao interactive segmentation benchmarks,

respectively. We graphically depict the given markers on the original images using

red color for foreground and green color for background, respectively. The red and

blue coloring of intermediate results correspond to foreground and background

classes, respectively. The white color pixels of intermediate results correspond to

unclassified pixels. In Figs. 6(f), 6(r) and 7(b) the initial map of classified pixels

also corresponds to the final segmentation, since the foreground and background

classes are well discriminated using the initial marker information. In most of

the cases both of the proposed algorithms give high performance results. In 7(j)

and 7(n), although the visual information of the given markers does not suffice to

discriminate the foreground and background classes, the proposed methods give

good performance results. In any case, the results of the SGC-ILFMA and SGC-

ILFMA algorithms are almost the same.

A demonstration of the proposed method is given in [32]. This page also con-

tains the results of the SGC-ILFMA and SGC-PMCFA algorithms on the three

datasets used herein and related bibliography.

6.1. Influence of parameters

This section examines the sensitivity of the proposed method on the two pa-

rameters used, namely n and MaxConn, using a subset of 60 images from the used

datasets.

In order to prove the efficiency of our selection (n = 20) and to mea-

sure how this choice affects performance, we have tested different values of n,

(n ∈ {5, 10, 20, 30, 100}) measuring the region precision (see Table 1). It holds

that we get almost the same results when n ≥ 10, while the worst results are

obtained if we set n = 5. According to these results, the choice of n slightly affects

the performance of the algorithms, under the constraint that n ≥ 10. In [21], more

details about the choice of dimension of the Euclidean space, are found.
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Figure 6: (a), (e), (i), (m), (q) Original images with markers from the LHI dataset. (b),

(f), (j), (n), (r) Initial map of classified pixels. (c), (g), (k), (o), (s) Final segmentation

results of the SGC-ILFMA method. (d), (h), (l), (p), (t) Final segmentation results of the

SGC-PMCFA method.
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Figure 7: (a), (e), (i), (m), (q) Original images with markers from the Gulshan dataset. (b),

(f), (j), (n), (r) Initial map of classified pixels. (c), (g), (k), (o), (s) Final segmentation

results of the SGC-ILFMA method. (d), (h), (l), (p), (t) Final segmentation results of the

SGC-PMCFA method.
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Figure 8: (a), (e), (i), (m) Original images with markers from the Zhao dataset. (b),

(f), (j), (n) Initial map of classified pixels. (c), (g), (k), (o) Final segmentation results of

the SGC-ILFMA method. (d), (h), (l), (p) Final segmentation results of the SGC-PMCFA

method.

Method n = 5 n = 10 n = 20 n = 30 n = 100

SGC − ILFMA 82.40% 83.54% 83.42% 83.44% 83.73%

SGC − PMCFA 82.93% 83.56% 83.78% 83.76% 83.88%

Table 1: The region precision of SGC-ILFMA and SGC-PMCFA algorithms using different values

for n.
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Method 6 8 10 12 14

SGC − ILFMA 83.27% 83.42% 83.42% 81.26% 81.30%

SGC − PMCFA 83.49% 83.79% 83.78% 82.46% 82.14%

Table 2: The region precision of SGC-ILFMA and SGC-PMCFA algorithms using different values

for MaxConn.

Method SGC-ILFMA SGC-PMCFA CO3 Unger et al. Bai et al.

RP 85.44% 85.18% 79% 73% 50%

BP 0.365 0.369 0.21 0.16 0.05

Table 3: The region precision (RP ) and boundary precision (BP ) of SGC-ILFMA, SGC-PMCFA,

CO3 [12], Unger et al. [14], Bai et al. [10] algorithms over the LHI dataset.

Concerning the parameter MaxConn, we have tested different values of

MaxConn, (MaxConn ∈ {6, 8, 10, 12, 14}) measuring the region precision (see

Table 2). It holds that we get almost the same results when MaxConn ∈ [6, 10].

Slightly lower performance is obtained when MaxConn ≥ 12, due to the fact that

the resulting graph has significant differences on the degree of nodes.

6.2. Comparison with other algorithms on the LHI dataset

We have compared the proposed methods with three other algorithms from

the literature: CO3 [12], Unger et al. [14] and Bai et al. [10], using the reported

results of [12]. Table 3 depicts the mean region precision (RP ) and boundary

precision (BP ) of SGC-ILFMA, SGC-PMCFA, CO3, Unger et al., Bai et al. algo-

rithms over the LHI dataset (63 images). The proposed methods SGC-ILFMA and

SGC-ILFMA outperform the other methods. The SGC-ILFMA and SGC-PMCFA

algorithms give quite similar, high accuracy for this benchmark. ILFMA provides

smoother boundaries than SGC-PMCFA. The third highest performance results

are given by the CO3 [12] method.

6.3. Comparison with other algorithms on the Gulshan dataset

In Gulshan dataset, there exist several images where the visual information

of given markers does not suffice to discriminate the foreground and background
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classes (e.g. see Figs. 6(n) and 6(r)). So, in [11], extra markers have been added by

a robot user according to well-defined rules, that model the way in which residual

error in segmentation is progressively reduced in an interactive system. In this

work, we have used this dataset without additional markers in order to examine

the limits of the proposed algorithms in quite difficult cases. When no additional

markers are used, the highest region precision (RP ) is 58.9% (see Fig. 12 in [11])

obtained by the GSCseq algorithm [11]. The corresponding RP of the proposed

methods SGC-ILFMA and SGC-PMCFA is 57.7% and 59.5%, respectively. Hence,

according to these results SGC-PMCFA slightly outperforms the rest of the meth-

ods for this benchmark.

6.4. Comparison with other algorithms on the Zhao dataset

In addition, we have compared the proposed methods with four other algo-

rithms from the literature Bai et al. [10], Couprie et al. [33], Grady [34] and

Noma et al. [35] using the reported results of [28] on Zhao dataset. According to

[28], Couprie et al., Grady and Noma et al. algorithms give the highest perfor-

mance on Zhao dataset.

Table 4 depicts the mean region precision (RP ) on four different simulation

levels of SGC-ILFMA, SGC-PMCFA, Bai et al., Couprie et al., Grady and Noma

et al. algorithms over the Zhao dataset. The four examples of Fig. 8 (8(b), 8(f),

8(j) and 8(n)) correspond to the four simulation levels (types of users’ scribbles)

of Zhao dataset. The higher the level, the more markers are added in order to

simplify the problem. The proposed methods (SGC-ILFMA and SGC-ILFMA)

clearly outperform the other methods at the first three simulation levels that cor-

respond to the most difficult cases (less markers). At the fourth simulation level,

it holds that the proposed methods and the Couprie et al. and Grady yield similar

results outperforming the other methods. The average performances are 81.1%,

81.8%, 60.8%, 73.5%, 72.3% and 71.8% for SGC-ILFMA, SGC-PMCFA, Bai et

al., Couprie et al., Grady and Noma et al. methods, respectively. Therefore, the

results with highest performanceare are clearly obtained by the SGC-ILFMA and
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Method SGC-ILFMA SGC-PMCFA Bai et al. Couprie et al. Grady Noma et al.

1 66.7% 68.4% 36% 50% 46% 49%

2 84.1% 84.5% 53% 72% 71% 69%

3 85.3% 85.7% 74% 84% 84% 82%

4 88.1% 88.6% 80% 88% 88% 87%

Table 4: The region precision (RP ) on four different simulation level of SGC-ILFMA, SGC-

PMCFA, Bai et al. [10], Couprie et al. [33], Grady [34] and Noma et al. [35] algorithms over the

Zhao dataset.

SGC-PMCFA algorithms. The third highest performance results are given by the

Couprie et al. [33] method that gives similar results with the Grady and Noma et

al. method.

7. Conclusion

In this paper, we proposed an interactive image segmentation algorithm. Ac-

cording to the proposed framework, the problem of interactive image segmentation

has been solved in two steps taking into account image visual information, prox-

imity distances as well as the given markers. In the first step, we constructed a

weighted graph of superpixels and we clustered this graph based on a synthetic

coordinates algorithm in order to create an initial map of classified superpixels. In

the second step, we have used a Markov Random Field model or a flooding algo-

rithm for getting the final, pixel-level, image segmentation. Experimental results

and comparisons with other methods from the literature on the LHI, Gulshan and

Zhao datasets demonstrate the high performance of the proposed scheme. The

proposed method can yield high performance results under different shapes of the

initial markers.
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