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Abstract. We examine integrated luminosity relations between the IR continuum and the
CO rotational ladder observed for local (ultra) luminous infra-red galaxies ((U)LIRGs, Lir >
10*! Mg ) and normal star forming galaxies in the context of radiation pressure regulated star
formation proposed by Andrews & Thompson (2011). This can account for the normalization
and linear slopes of the luminosity relations (log Lir = alog Lo + 3) of both low- and high-
J CO lines observed for normal galaxies. Super-linear slopes occur for galaxy samples with
significantly different dense gas fractions. Local (U)LIRGs are observed to have sub-linear high-
J (Jup > 6) slopes or, equivalently, increasing Lcohigth/LIR with Lir. In the extreme ISM
conditions of local (U)LIRGs, the high-J CO lines no longer trace individual hot spots of star
formation (which gave rise to the linear slopes for normal galaxies) but a more widespread warm
and dense gas phase mechanically heated by powerful supernovae-driven turbulence and shocks.
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1. Introduction

Simple luminosity relations between the IR emission (Lig) and that of molecular tran-
sitions (L! ., — typically low-J rotational lines of CO or of dense gas tracers like HCN,
HCO™, and CS) has seen widespread use as proxies for more fundamental relations be-
tween gas density and star formation rate, i.e., so-called Kennicutt-Schmidt ‘laws’ or star
formation relations. However, prior to the launch of the Herschel Space Observatory there
had been no systematic extragalactic survey of high-J CO lines (i.e., Jyp > 7 and above).
For these lines to be strongly excited requires high densities (ne, ~ 10* — 7 x 105 cm™3)
and (in most circumstances) high temperatures (E;/kg ~ 55 — 500K) — i.e., a hot and
dense gas phase that would leave no easily discernible signature on the low-/mid-J lines
(and line ratios) of CO and dense gas tracers (e.g., HCN and CS).

The first directly measured Lig — L, correlations for Ju, > 7 CO transitions were
presented by Greve et al. (2014) (hereafter G14), and based on SPIRE-FTS spectra (CO
J =4-3to J = 13—12) obtained for 29 local (z < 0.1) (U)LIRGs as part of the Herschel
Comprehensive (U)LIRG Emission Survey (HerCULES, see van der Werf et al. (2010)
and Rosenberg et al. (2015)). G14 also included ground-based J =1-0,2—1, and 3—2
CO line data for a sample of 45 local (U)LIRGs (from Papadopoulos et al. (2012)). Fitting
log-linear expression of the form log Lig = alog Lo + B to their (U)LIRG sample, G14
found: 1) linear slopes (a ~ 1) for J =1—0 to 6 — 5, but increasingly sub-linear (o < 1)
for higher J-levels; 2) roughly constant normalizations (8 ~ 2) up to J = 6 — 5, but then
increasing with higher J-levels. For J, < 6 the linear slopes are in agreement with the
majority of previous studies. Sub-linear CO J = 7 — 6 slopes was also found by Bayet et
al. (2009), who also predicted increasingly sub-linear slopes at higher J-lines using model
extrapolations. More recently Liu et al. (2015) and Kamenetzky et al. (2015) (hereafter
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L15 and K15, respectively) have delineated the Lig — L, relations up to J = 13—12 for
much larger samples of local galaxies than that of G14 (spanning a range of 107 —10'® L,
in Lir). Both studies find increasingly sub-linear o for Jy, > 6, when fitting only to the
(U)LIRG population, in broad agreement with G14 (Fig. 1a). The three studies also find
similar S-values for J,p, > 6 (Fig. 1b). However, L15 and K15 find linear slopes for all
transitions up to J = 13 — 12 (Fig. 1b) when fitting to their full samples, which are
dominated by normal star forming galaxies. Finally, most surveys of HCN, HCO*, and
CS towards nearby star forming galaxies (Lig ~ 10° — 10'? L, ) have established linear
slopes for the low-/mid-J transitions (Fig. la and b) (e.g., Gao & Solomon 2004; Zhang
et al. 2014; cf. Garcia-Burillo et al. 2012).

2. a and S for low-J CO and HCN/CS/HCO™ lines

Stars form in dense, highly dust-obscured regions, and the radiation pressure exerted
by the strong absorption and scattering of UV light by dust grains is likely to be an impor-
tant SF-regulating feedback mechanism. Andrews & Thompson (2011) derived the Lig —
Lo, , relations in the case of Eddington-limited SF and found the maximal possible
luminosity is given by Lgqq = 477Gcn_1XcoL'CO, where £ is the Rosseland-mean opacity,
and Xco is the Lo-to-My, conversion factors. This not only accounts for the linear
slopes observed for the LIR*LICOIOW,J relations, but also constrains the overall normaliza-
tion. Adopting k = 5—30cm? g~! and Xco ~ 0.8 My (Kkms™! pc?)~L, which are plau-
sible (albeit poorly constrained) values for (U)LIRGs, fgqq = log(4mGex ' Xco) = 2.5—
3.3 (Fig. 1c). For normal star forming galaxies, where Xco ~ 4.4 Mo (Kkms~!pc?)~1,
Brad ~ 3.3 — 4.1 (Fig. 1d).

As expected, Bgrqq sets an upper limit on the observed S-values, and (U)LIRGs — hav-
ing a larger fraction of the ISM being dense and actively forming stars — are significantly
closer to this maximal limit than normal star forming galaxies. This ‘intermittency’
(Andrews & Thompson 2011), i.e., the fraction of the ISM actively forming stars (effec-
tively the dense gas fraction, fdense), sets the Lig — L/Colow_.] normalization for a given
galaxy population. By the same token, two galaxy samples with significantly different
dense gas fractions (fdense,1 and fdense,2, say) will have Lig — L relations offset by
AB ~ 10g(fdense,2/ fdense,1). Thus, an increasing fdense(Lir) function (or, equivalently,
B(Lir)) can explain the super-linear (a ~ 1.1 —1.3) Lir — L, relations derived by
some studies of 'mixed’ galaxy samples (Fig. 1b).

For HCN and CS, Bgaq ~ 3.1 — 5 and ~ 3.6 — 5, respectively, assuming Xgcn =
3—35My (Kkms™!pc?)~! and Xcs = 10 — 40 My, (Kkms~!pc?)~!. Being superior
tracers of the dense, actively star forming gas, the observed [-values for HCN and CS
are much closer to (but still enveloped by) the Eddington limit than was the case for
(low-/mid-J) CO (Fig. 1d). The issue of ‘intermittency’ is thereby also all but removed
for these tracers, resulting in their approximately linear Lig — L/, relations across a
vast Lir range (e.g., Wu et al. 2010).

3. « for high-J CO lines: linear or sub-linear?

Three independent studies (G14; L15; K15) have shown that local (U)LIRGs exhibit
sub-linear high-J Lig — L relations, and two of those (L15 and K15) further showed that
the slopes are linear for samples dominated by normal star forming galaxies. In the latter
case, the high-J CO lines are tracing SF ‘hot spots’ of warm dense gas being heated either
‘calorimetrically’ by UV-photons from nearby OB-associations, and/or mechanically by
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Figure 1. Observed « (top) and 3 (bottom) vs. critical density for the CO ladder. Panels a)+c)
show (a,B)-values inferred from (U)LIRG samples only (Bayet et al. 2009; G14; L15; K15), and
b)+d) are mainly for normal star forming galaxies (L15; K15). Also shown are («,()-values
for transitions of the dense gas tracer molecules HCN, CS, and HCO™. The shaded horizontal
regions indicate Sgaq (= log(4rGckXmol)) for CO, HCN, and CS expected for Eddington-limited
SF, assuming optically thick FIR opacities in the range x = 5—30cm? g~* and conversion factors
(Xmol, in units of Mo (Kkms™' pc?)™!) as indicated in panels c)+d).

SN-driven shocks and outflows from young stellar objects. Just as the HCN/CS lines
have (-values close to the Eddington limit, so do the high-J CO lines (Fig. 1d), which
may reflect this more direct link with the SF-sites than the lower-J CO lines.

Clearly, local (U)LIRGs (having aco,,,,_; < 1 and Bco,;,,_; > Bedd) do not adhere to
this picture, which is not surprising given their extreme ISM conditions. In fact, high-J
CO lines are observed to be more strongly excited in local (U)LIRGs than in normal
galaxies (e.g., Papadopoulos et al. 2014; G14) and, on average, Lco,,,,_,/Lir increases
with Lig for LIRG-like luminosities and above (K15). The latter is compatible only with
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a < 1, since a linear a would imply Lco/Lir L%Iéa_l x 1078/* = 1078 = constant.
In a similar vein, G14 noted that aco, ,_, can be expressed as:

dlog lgense dlog lgens
J,J—1 ~ ensey, j—1
QCOy ;-1 = QHON; o | 1+ Tl | = 1+ Toell (3.1)
0g COyJ, 71 0g COJJ-1
’ ’ 1 . c . .
where lqense, ;_, = HCNLU/LCOJ’F1 ~ fdenserJval, parametrizes deviations in aco, ;_,

from unity, and depends on both the dense gas content (faense ~ Licn, ,/Lco, ,) and the
global CO line excitation (rjj_1 = Léjo,,“,,l / LICOl,o)' The sub-linear slopes for higher
J lines observed in (U)LIRGs is due to an increase in the excitation of these lines — and
thereby in the warm and dense gas fraction — with increasing high-J CO luminosity. The
presence of a significant warm and dense molecular gas component has been suggested
as a general feature of the ISM in extreme merger/starbursts such as local (U)LIRGs by
Papadopoulos et al. (2012), who argued that high CR energy densities and/or the dissi-
pation of shocks due to strong SN-driven supersonic turbulence can volumetrically heat
and maintain significant amounts of high-density gas at temperatures > 100 K more effi-
ciently than UV radiation, and without being attenuated by dust or readily dissociating
CO as UV radiation does.

We end on a few cautionary notes regarding the Lig — L], relations. They: 1) are only
of use in a statistical sense, and individual sources may show significant departures; 2)
do not necessarily apply to high-z dusty star forming galaxies, which are a heterogeneous
population and in general not scaled-up versions of local ULIRGs; 3) are galaxy-integrated
relations. Resolved HCN observations of nearby galaxies have shown significant scatter
in the IR/HCN luminosity ratio (Kepley et al. 2014); 4) may not have a straightforward
interpretation in the case of local (U)LIRGs, where an obscured hot mid-IR core may
cause strong self- and continuum-absorption of HCN and CO lines (Aalto et al. 2015).
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