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ABSTRACT
In this paper, we analyze and compare the performance of four dif-
ferent community detection algorithms, each following a different
approach. The performance of the algorithms is compared on a va-
riety of benchmark graphs with known community structure. Ex-
periments reveal the strengths and weaknesses of the involved al-
gorithms and demonstrate the necessity to devise local and efficient
community detection techniques that perform well under a variety
of changing conditions.

Categories and Subject Descriptors
I.5.3 [Clustering]: [Algorithms, Similarity measures]; G.2.2 [Graph
Theory]: [Graph labeling]
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Networks in various application domains present an internal struc-
ture, where nodes form groups of tightly connected components
which are more loosely connected to the rest of the network. These
components are mostly known as communities, clusters, or groups,
terms used interchangeably in the rest of this paper. Uncovering
the community structure of a network is a fundamental problem in
complex networks. With the advent of Web 2.0 technology, came
along the emerging need to analyze network structures like web
communities, social network relations, and in general user’s col-
lective activity in collaborative environments. A strong community
is defined as a group of nodes for which each node has more edges
to nodes of the same community than to nodes outside the commu-
nity [1]. This definition is relatively strict, since it does not allow
for overlapping communities and creates a hierarchical community
structure, since the entire graph can be a community itself. A gen-
eralized community, is defined as a subgraph in which the sum of
all node degrees within the community is larger than the sum of all
node degrees towards the rest of the graph [3]. Other definitions are
related to the optimization of some “fitness” criterion like for ex-
ample the intracommunity edge density [7], or the intercommunity
edge cut [1]. In general, community detection is the problem of
finding a partition of a graph into subgraphs that maximizes some
quality criterion which reflects the density of the subgraph(s).

Variations appear in the methodology used to identify communi-
ties. Certain algorithms follow an iterative approach starting by
characterizing either the entire network, or each individual node as
community, and splitting [2, 6] or merging [3] communities, re-
spectively. These methods produce a hierarchy of nested commu-
nities. By merging or splitting communities one can build a hierar-
chical tree of community partitions called dendrogram. Several re-
searcher aim to find the entire hierarchical community dendrogram
[2, 6], while others try to identify only the optimal community par-
tition [1]. More recent approaches aim to identify the community
surrounding one or more seed nodes [7]. Some researchers aim to
discover distinct (non-overlapping) communities, while others al-
low for overlaps [5].

In this paper we compare the performance of four different com-



munity detection algorithms found in the literature. These are New-
man’s algorithm [2] that follows a divisive-agglomerative approach,
CiBC [3], an algorithm which starts my merging individual nodes
into larger communities, Bridge Bounding [7], a local community
detection algorithm that exploits edges with low clustering coeffi-
cient to identify communities bridges (inter-community edges), and
Fortunato’s [4] another local algorithm whose operation is based on
the evaluation of a fitness function. The ability of the algorithms
for unveil the entire community structure of networks is exploited.
The performance of these algorithms is compared on a number of
benchmark graphs with known community structure using the well
established modularity metric [2].

2. COMMUNITY DETECTION
2.1 Newman’s algorithm
One of the well known community finding algorithms was devel-
oped by Girvan an Newman [2, 6]. This algorithm follows, what
is known as, the divisive-agglomerative method, a hierarchical ap-
proach based on which communities are detected by removing edges
iteratively from the graph. An edge that belongs to many shortest
paths between nodes has high betweeness and has to be removed,
because it is more likely to be an inter-community edge. By remov-
ing gradually edges, the graph is split and its hierarchical commu-
nity structure is revealed. The algorithm is computationally inten-
sive, because following the removal of an edge, the shortest paths
between all pairs of nodes have to be recalculated. However, it re-
veals not only individual communities, but the entire hierarchical
community dendrogram of the graph. An important element of the
algorithm is the modularity calculation, which is used to evaluate
the quality of a community partition resulting and also as a termi-
nation criterion for the algorithm.

Although there is a wide range of betweenness measures available,
shortest-path betweenness is used due to the lower computational
cost and the satisfactory results. Shortest-path betweenness can be
calculated by finding the shortest paths between all pairs of ver-
tices and summing up how many of those run along each edge.
Experimental results for implementations of the algorithm based
on different betweenness metrics have shown no significant impact
on the quality of the community structure output.

The general form of Newman’s algorithm is as follows:

1. Calculate betweenness scores for all edges of the network.

2. Find the edge with the highest betweenness value and remove
it from the network.

3. Recalculate betweenness for all remaining edges.

4. Repeat from step (2).

The output of this process can be represented as a dendrogram de-
picting the successive splits of the network. The detection pro-
cess can be stopped at any point the output community structure
is judged to be satisfactory. An accurate way to determine if a
network division is satisfactory is to use an appropriate evalua-
tion metric. A metric that can carry out this task is the modular-
ity metric. Modularity essentially indicates the extent to which
a given community partition is characterized by high number of
intra-community edges compared to inter-community ones. Essen-
tially, the algorithm proceeds as long as network partitions with

higher modularity are produced after edge removals. An appropri-
ate modularity threshold is applied in order to identity the optimal
community structure and the algorithm to terminate.

The key in order to achieve acceptable results is the recalculation
step. After the removal of an interconnecting edge, the workload
for the remaining edges standing between two communities is in-
creased. The fewer are the remaining edges, the more dramatic
becomes the increase. As a consequence a single betweenness cal-
culation followed by the serial removal of edges in descending be-
tweenness order could lead to the faulty removal of an edge and
thus poor results for the algorithm.

Summing up, despite being a fairly successful and robust algo-
rithm, Newman is computationally intensive and thus fails to keep
up with the perpetual evolution in the field of community detec-
tion. This becomes more obvious when we have to deal with large
datasets or streaming data produced by modern web systems.

2.2 CiBC
Compared to other community detection algorithms applied in var-
ious scientific fields, CiBC was designed to fulfil the very specific
task of identifying Web communities from a web server content, in
order to improve the performance of CDNs.

The algorithm is based on a slightly different definition from what
is traditionally considered as a network community. Usually, a
community is defined as a subgraph for which each node has more
edges to nodes of the same community than to nodes outside the
community (strong community). A more flexible definition, called
generalized community, is the following: a community is a sub-
graph in which the sum of all node degrees within the community
is larger than the sum of all node degrees towards the rest of the
graph. Apart from the capability of identifying overlapping com-
munities, CiBC has one more innovative characteristic, its hybrid
nature, using both local and global graph’s properties in order to ac-
complish its mission. Community detection is performed in three
phases, with each phase including further steps.

In the first phase, the Betweeness Centrality (BC) is calculated for
each node of the graph as shown in [3]. BC is a metric used to
measure how “central” a node is in the graph. Last step before
proceeding with phase two includes the sorting of the nodes of the
graph by ascending BC value.

The second phase concentrates on the initialization of the cliques.
This is achieved using an iterative procedure starting with the nodes
with the lowest BC values. Although a high BC value may indicate
that a node is central within a community, it can also be an indica-
tion of a node that is central within the graph, connecting different
communities. Moreover, if we start with a node characterized by a
high BC value, it is highly possible to end up with a single com-
munity that includes all nodes of the graph. In each iteration, if the
currently-selected node v is not assigned to any group yet, a new
subset of the graph called clique is created. In this clique, we in-
clude all nodes that belong to the neighborhood of v. Moreover, we
further expand this clique using Bounded-BFS with typical depth
value

√
(N) (where N is the number of nodes). By applying this

procedure, after the completion of all iterations, a set of groups
(cliques) will be created. This fatefully leads to phase three of the
algorithm.



The large number of the created groups raises the need for some
sort of minimization, in order to get the desired generalized com-
munity structure. This task is carried out by merging these groups
through an iterative process. We define an l × l matrix B, where l
refers to the number of the groups produced at phase two. Each el-
ement B[i, j], with i �= j of the matrix corresponds to the number
of edges that connect directly nodes assigned in group i to nodes
assigned in group j. On the other hand, each element B[i, j] with
i = j corresponds to the number of edges internal in group i. In
each iteration, the pair of groups with maximum B[i,j]

B[i,i]
value is se-

lected for merging and then the recalculation and repopulation of
matrix B is required. The process terminates when there is no pair
of groups with B[i,j]

B[i,i]
≥ 1.

2.3 Bridge Bounding
The authors of [7] introduce a local methodology for community
detection, named Bridge Bounding. The algorithm initiates the
community detection from a certain seed node and progressively
expands the community trying to identify bridges, i.e. edges that
act as community boundaries. The edge clustering coefficient is
calculated for each edge, looking at the edge’s neighborhood, and
edges are characterized as bridges depending on whether their clus-
tering coefficient exceeds a threshold. The method is local, has low
complexity and allows the flexibility to detect individual commu-
nities. Additionally, the entire community structure of a network
can be uncovered starting the algorithm at various unassigned seed
nodes, till all nodes have been assigned to a community.

In order to identify a community around a seed node s the algo-
rithm uses a flooding technique. Starting at node s, nodes in the
neighborhood of s are gradually attached to the community if the
following two conditions are satisfied: neighbor v does not belong
to any other community and the edge connecting s to v is not a
bridge (community boundary). The term bridge defines an edge
connecting two nodes that are members of different communities.
The steps described above are repeated for every node until no other
node can be attached to the community. Repeating the same pro-
cedure for different nodes, inevitably leads to the discovery of the
overall community structure of the graph.

A critical task for the algorithm is the definition of function BL,
which maps each edge to a real number in the interval [0, 1], quan-
tifying the extent to which an edge acts as a “bridge”. More pre-
cisely, the value BL for edge (s, v) is defined as: BL(s, v) =

1− N(s)∩ N(v)
min(d(s)−1,d(v)−1)

, where N(s) denotes the neighborhood for
node s and d(s) its degree. A low BL value indicates an edge
connecting nodes of the same community. Conversely, a high BL

value indicates an edge that acts as a bridge connecting two differ-
ent communities.

During the flooding process, the algorithm can decide which edges
are community bridges by comparing the result of the function with
a predefined threshold. In order to assign a value to the threshold,
we first have to examine the distribution of BL values all graph
edges. In that way, we introduce a global step with low computa-
tion cost. Assuming that similar networks have similar BL values
distribution the threshold value can be pre-defined. This assump-
tion can be proven experimentally.

2.4 Fortunato’s algorithm
An interesting method for community detection appears in [5]. This
algorithm is developed based on the observation that network com-

munities may have overlaps, and, thus, algorithms should allow for
the identification of overlapping communities. Based on this prin-
ciple, a local algorithm is devised developing a community from a
seed node and expanding around it. A community is identified as
a subgraph that has a certain fitness. The authors provide an ap-
propriate fitness function, whose calculation is based on the num-
ber of inter- and intra-community edges and a tunable parameter
a. Starting at a node, at each iteration, the community is either
expanded by a neighboring node that increases the community fit-
ness, or shrinks by omitting a node if this action results in higher
fitness for the community. The algorithm stops when the insertion
of any neighboring node would lower the fitness of the community.
This algorithm is local, and able to identify individual communi-
ties. The entire overlapping and hierarchical structure of complex
networks can also be found.

For a community G of the graph, the fitness fG is calculated as
follows:

fG =
KG

in

(KG
in + KG

out)
a

(1)

where KG
in and KG

out refer to the total internal and external degrees
of community G respectively, and a is a positive real-valued param-
eter which controls the size of the community.

As mentioned above, in order to reveal the entire community struc-
ture of a network, each node should belong to at least one commu-
nity. To achieve this goal we apply the process summarized below:

1. Select at random node A.

2. Discover the natural community of node A.

3. Randomly select a node B that has not been assigned to a
community.

4. Discover the natural community of B, by exploring all the
candidate nodes regardless of whether they belong to other
communities (allow for overlaps).

5. Repeat from step (3).

A major advantage of the above approach is the lower computa-
tional cost. In summary, Fortunato’s algorithm is a modern and
highly successful algorithm as it is revealed by its experimental re-
sults.

3. EXPERIMENTAL EVALUATION
In this section we describe the experimental framework, namely the
way benchmark graphs were created, the modularity metric used
for the comparison of the algorithms, and finally the a comparative
analysis of the algorithms’ performance. We have created a variety
of benchmark graphs with known community structure to test the
accuracy of our algorithm. Benchmark graphs are essential in the
testing of a community detection algorithm, since there is an apri-
ori knowledge of the structure of the graph and thus one is able to
accurately ascertain the accuracy of the algorithm. Our benchmark
graphs were generated randomly given the following set of param-
eters: number of graph nodes N , number of communities Comm,
node degree degree, and finally ratio of intra-community edges to
node degree local/degree. The parameters used for the creation
of the benchmark graphs and their corresponding values are shown
in Table 1.
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Figure 1: (a) Newman’s algorithm (b) Bridge bounding algorithm. (c,d) CiBC algorithm with (c) depth 2 BFS and (d) without BFS.
(e,f) Fortunato’s algorithm with (e) a = 0.6 and (f) a = 0.8.



N 512, 1024
Comm 4, 8, 16, 32
Degree 10, 20, 30
local/degree 0.75, 0.85, 0.95

Table 1: Parameters used for the benchmark graphs.

In order to compare the performance of the algorithms, we use the
well established modularity metric. Modularity essentially indi-
cates the extent to which a given community partition is character-
ized by high number of intra-community edges compared to inter-
community ones and is calculated as follows: for a network com-
munity structure with l communities, an l × l symmetric matrix e
is defined whose element eij is the fraction of all edges in the net-
work that connect nodes in community i to nodes in community j.
The row sums ai =

∑
j eij of this matrix represent the fraction of

edges with an endpoint in community i. Modularity Q of a com-
munity partition is defined as follows: [2, 6]:Q =

∑l
i=1 eii − a2

i .
Modularity measures the fraction of intra-community edges minus
the expected value of the same quantity in a network with the same
community division and random connections between nodes. If
the number of intra-community edges is no better than random, we
will get a modularity value close to 0, while modularity values ap-
proaching 1 (which is the maximum possible) indicate networks
with strong community structure.

Fig. 1 show the performance of the four algorithms on the bench-
mark graphs we created with respect to modularity. Modularity is
plotted against two parameters that were shown to play the most
important role in the performance of the algorithms. For all al-
gorithms these two parameters are the number of communities in
the graph and the local/degree which is an indication of the den-
sity of the communities. The experimental results on the given
benchmark graphs demonstrate that although Newman is a com-
putationally intensive community finding algorithm, it is not very
effective in identifying communities in the given graphs, and starts
to be effective only when community density becomes very high
(Fig. 1(a)).

Similarly, Bridge Bounding is mostly effective for graphs with very
dense communities, where local

degree
approaches 0.9 and higher (Fig.

1(b)). However, Bridge Bounding (BB) is a local algorithm and re-
quires very little time. We can thus conclude that BB can be safely
used on graphs with very dense communities. CiBC seems to per-
form better than the previous two algorithms. When cliques are not
expanded with BFS , CiBC seems to give decent results when com-
munity density exceeds 0.8 ( local

degree
> 0.8), as shown in Fig. 1(c).

However, comparing CiBC to Bridge Bounding, we need to empha-
size that CiBC is not a local algorithm as Bridge Bounding is, and
its operation requires a global view of the entire graph. However,
starting with individual nodes and merging them into larger com-
munities, renders it far less computationally intensive compared to
Newman which uses the inverse approach, namely, starts with the
entire graph and splits it into communities by gradually removing
edges. Using community merging, CiBC never reaches the point to
manipulate the entire graph as a whole.

Figs. 1(e) and 1(f) demonstrate FortunatoŠs performance for two
different values of a, namely a = 0.6 and a = 1.0. In both cases
Fortunato outperforms its previous counterparts demonstrating its
ability to identity communities even in graphs with community

density local
degree

> 0.7. Furthermore, Fortunato is a local algorithm
a little more computationally efficient compared to Bridge Bound-
ing. The advantage of Fortunato is that the fitness function it uti-
lized to expands a community from a seed node is directly related
to the density of the community. Thus, Fortunato is the best of all
candidates and could be safely used to identify communities in var-
ious application domains. The fact that it is a local algorithm makes
it easy to apply in situations where a global view of the network is
not easy to obtain. Finally, we have to mention that FortunatoŠs
algorithm allows for further improvement.

4. CONCLUSIONS
We compared the performance of four community detection al-
gorithms, each one following a different approach. The perfor-
mance of the algorithms was demonstrated on a variety of bench-
mark graphs with known community structure. In general, based on
the above observations we can derive the conclusion that although
community finding is a problems that appears in many different
version and exhibits a richness of solutions, there is still plenty of
room for improvement of existing solutions and for the derivation
of new ones that would allow the manipulation of graphs from var-
ious new and emerging application domains like social networks
and other types of collaborative environments. There is an emerg-
ing need to devise community detection algorithms for dynamic
graphs, i.e. graphs whose structure evolved over time. Such algo-
rithms would be able to capture for example the dynamic evolution
of social networks.
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