
FlowPro: A Flow Propagation Method for Single
Community Detection

Costas Panagiotakis∗, Harris Papadakis†, and Paraskevi Fragopoulou†
∗Department of Business Administration,

Technological Educational Institute of Crete, Agios Nikolaos, Greece
Email: cpanag@staff.teicrete.gr

†Department of Informatics Engineering,
Technological Educational Institute of Crete, Heraklion, Greece

Email:adanar@ie.teicrete.gr, fragopou@ics.forth.gr

Abstract—In this paper, we propose a flow propagation algo-
rithm (FlowPro) that finds the community of a node in a complex
network. The novelty of the proposed approach is the fact that
FlowPro is local and it does not require the knowledge of the
entire graph as most of the existing methods from literature.
This makes possible the application of FlowPro in extremely large
graphs or in cases where the entire graph is unknown like in most
social networks. In addition, it simply compute the community of
exactly one node, that is the major issue in most social network
based applications. Experimental results and comparisons with
other methods from the literature are presented for a variety of
benchmark graphs with known community structure, derived by
varying a number of graph parameters and real dataset graphs.

I. INTRODUCTION

Various applications like finding web communities, detect-
ing the structure of social networks, or even analyzing a
graph’s structure to uncover Internet attacks are just some of
the applications for which community detection is important.
Several attempts have been made to provide a formal definition
to the generally described “community finding” concept, pro-
viding different approaches. Some of them aim at detecting the
so-called, strong communities, groups of nodes for which each
node has more edges to nodes of the same community than
to nodes outside the community [1]. Others aim at detecting
weak communities, which is defined as a subgraph in which
the sum of all node degrees within the community is larger
than the sum of all node degrees towards the rest of the graph
[2]. Variations also appear in the method used to identify
communities: Some algorithms follow an iterative approach
starting by characterizing either the entire network, or each
individual node as community, and splitting [3] or merging
[2] communities respectively, producing a hierarchical tree of
nested communities, called dendrogram. Several researchers
aim to find the entire hierarchical community dendrogram [3]
while others wish to identify only the optimal community
partition [1]. More recently used approaches aim to identify
the community surrounding one or more seed nodes [4]. Some

Paraskevi Fragopoulou is also with the Foundation for Research and
Technology-Hellas, Institute of Computer Science, 70013 Heraklion, Crete,
Greece.

researchers aim at discovering distinct (non-overlapping) com-
munities, while others allow for overlaps between communities
[5].
Two comprehensive and relatively recent surveys covering

the latest developments in the field can be found in [6], [7].
While the first algorithms for the problem used the agglomera-
tive approach trying to derive an optimal community partition
by merging or splitting other communities, recent efforts
concentrate on the derivation of algorithms based exclusively
on local interaction between nodes. A community surrounding
a seed node is identified by progressively adding nodes and
expanding a small community.
One of the most known community finding algorithms

was developed by Girvan an Newman [3]. This algorithm
iteratively removes edges participating in many shortest paths
between nodes (indicating bridges), connecting nodes in dif-
ferent communities. By gradually removing edges, the graph
is split and its hierarchical community structure is revealed.
The algorithm is computationally intensive because following
the removal of an edge, the shortest paths between all pairs
of nodes have to be recalculated. However, it reveals not only
individual communities, but the entire hierarchical community
dendrogram of the graph.
The authors of [4] introduce a local methodology for

community detection, named Bridge Bounding. The algo-
rithm can identify individual communities starting at seed
nodes. It initiates community detection from a seed node
and progressively expands a community trying to identify
bridges. An edge is characterized as a bridge by computing
a function related to the edge clustering coefficient. The edge
clustering coefficient is calculated for each edge, looking at the
edge’s neighborhood, and edges are characterized as bridges
depending on wether their clustering coefficient exceeds a
threshold. The method is local, has low complexity and allows
the flexibility to detect individual communities, albeit less
accurately. Additionally, the entire community structure of a
network can be uncovered starting the algorithms at various
unassigned seed nodes, till all nodes have been assigned to a
community.
Another efficient algorithm is the one described by Chen

et al. in [8]. The algorithm follows a top down approach

2

where the process starts with the entire graph and sequentially
removes inter-community links (bridges) until either the graph
is partitioned or its density exceeds a certain desired threshold.
If a graph is partitioned, the process is continued recursively
on its two parts. In each step, the algorithm removes the
link between two nodes with the smallest number of common
neighbors. The density of a graph is defined as the number
of edges in the graph divided by the number of edges of a
complete graph with the same number of nodes.
The algorithm described by Blondel et al. in [9] follows

a bottom-up approach. Each node in the graph comprises a
singleton community. Two communities are merged into one
if the resulting community has larger modularity value [10]
than both the initial ones. This is a rapid and accurate algo-
rithm which detects all communities in the graph. In suffers
however, in the sense, from the fact that during its execution, it
constantly requires the knowledge of some global information
of the graph, namely the number of its edges (which changes
during the execution since the algorithm modifies the graph),
limiting, to a certain extend, its distributed nature.
In [11]–[14] a distributed community detection algorithm

that identifies the entire community structure of a network
based on interactions between neighboring nodes. In the core
of our proposal lies the spring metaphor which inspired the
Vivaldi synthetic network coordinate algorithm [15]. Extensive
experiments on several benchmark graphs with known com-
munity structure indicate that our algorithm is highly accurate
in graph partitioning into non-overlapping communities, when
the entire graph structure is given. In addition, this method has
been successfully applied on interactive image segmentation
problem [16] resulting high performance results and outper-
forming other methods from literature.
We will now describe a state-of-the-art algorithm that we

compare our approach with, in the experimental evaluation
section. Lancichinetti et al. algorithm [5] is able to detect
a community starting on a one given node without the
knowledge of the entire graph similarly to our proposed Flow
Propagation method (FlowPro). In addition, this algorithm is
developed based on the observation that network communities
may have overlaps, and thus, algorithms should allow for
the identification of overlapping communities. Based on this
principle, a local algorithm is devised developing a community
from a starting node and expanding around it based on a fitness
measure. This fitness function depends on the number of inter-
and intra-community edges and a tunable parameter α. Starting
at a node, at each iteration, the community is either expanded
by a neighboring node that increases the community fitness,
or shrinks by omitting a previously included node, if this
action results in higher fitness for the resulting community. The
algorithm stops when the insertion of any neighboring node
would lower the fitness of the community. This algorithm is
local, and able to identify individual communities. The entire
overlapping and hierarchical structure of complex networks
can be found by initiating the algorithm at various unassigned
nodes.
Most of the approaches found it the literature are central-

ized, heuristic without a global optimality criterion. At the
same time they require the entire graph structure partitioning
the entire given graph into overlapping or non-overlapping
communities. On the contrary, in this paper, we have proposed
a local algorithm that can be implemented as a fully distributed
method that solves the single community detection problem
without the knowledge of the entire graph structure. This
makes possible the application of FlowPro in extremely large
graphs or in cases where the entire graph is unknown like in
most social networks. According to the problem formulation of
FlowPro, the probability of a node to belong on the requested
community is analogous on its stored flow. So, the stored
flow can be used as a belief (rating) of a node to belong
on the community and to answer on several questions like
find the k-nearest neighbors of the community of a node
that are important on several applications of social networks.
Lancichinetti et al. algorithm also is able to solve the single
community detection problem, but there is no any requirement
that the initial given node will also belongs on the detected
community. In addition, another strong point of the proposed
method is that according to the experimental results and
comparisons on real and synthetic data sets, the proposed
method clearly outperform the to Lancichinetti et al. algorithm.
In each iteration of the main process of FlowPro, the initial

node propagates a flow that is shared to its neighbors. Each
node is able to store, propagate to its neighbors and return a
part of flow to the initial node. When the algorithm converges,
the stored flow of the nodes that belong on the community
of initial node is generally higher than the stored flow of
the rest graph nodes resulting the requested community. A
flow propagation algorithm that has been successfully used on
point clustering problem [17] is the affinity propagation (AP)
method [18]. AP takes as input measures of similarity between
pairs of data points using negative squared error solving the
entire community detection problem. Real-valued messages
are exchanged between data points until a high-quality set
of exemplars and corresponding clusters gradually emerges.
The number of clusters is automatically estimated by the AP,
influenced by the values of the input preferences, but also
emerges from the message-passing procedure.
The remaining of the paper is organized as follows: Section

II presents the problem formulation. Our community detection
algorithm is presented and analyzed in Section III. Section IV
describes the experimental framework and comparison results
with other known algorithms on a number of benchmark
graphs. Finally, we conclude in Section V with some directions
for future research.

II. PROBLEM FORMULATION
This section, presents the local community detection prob-

lem and studies some issues that have been taken into account
in the proposed algorithm. Let G = (V,W) denote the given
graph comprising a set V of nodes together with a set W of
edges weights. In order to simplify the problem definition we
suppose that the graph is undirected and the edges’ weights
are equal to one if the edge exists. So, if there exist an edge

3

s a

b
cd

x

y

f

Fig. 1: A simple example of graph.

s a

b
cd

G2

G1

Fig. 2: An example of graph with two almost full connected
subgraphs G1 and G2.

from node i ∈ V to node j ∈ V , then the edge weight is
given by W (i, j) = 1, otherwise W (i, j) = 0. The proposed
problem formulation as well as the proposed method can be
extended to undirected weighting graphs.
According to the problem definition of local community

detection, the initial node (s ∈ V) is given and the goal is to
find the set of nodes C(s) that belong to the community of s,
with C(s) ⊇ {s}. This means that there exists high number of
edges between the nodes of C(s) comparing with the number
of edges that connects the nodes of C(s) and the rest graph.
Let p(x), x ∈ V denotes the probability that node x belongs

on C(s). Let d(x), x ∈ V denotes the shortest path distance
between the nodes x and s. Let {e1, e2, · · · , ed(x)} be the set
of edges of shortest path between the nodes s and x. Then,
p(x) can be estimated by the probability that the e1 ∈ C(s)∧
e2 ∈ C(s) · · · , ed(x) ∈ C(s). Let ρ be the average ratio of of
local links to node degree value, which dictates how strong the
clear the communities in the graph are. So, if we ignore the
graph structure then the probability of an edge e 1 to belong
on C(s) is given by ρ. Therefore, a simple estimation of p(x)
can be given by Equation 1 under the assumption that the
possibilities ei ∈ C(s) and ei+1 ∈ C(s) are independent.

p(x) = ρ−d(x) (1)

This estimation ignores the graph structure and it takes into
account only the d(x).
In addition, we have assumed that the Equation 2 is true for

p(x).

p(x) ≤
∑

y∈n(x) p(y)

|n(x)| (2)

where n(x) denote the set of neighbors of node x and |n(x)|
denote the number of neighbors of node x. We have used

inequality instead of equality in order to take into account
the case of bridge, meaning that it is possible that x does
not belong on C(s) even if x is connected with s. The
proposed algorithm is based on the Equations 1 and 2 in
order to estimate a quantity S(x) that is analogous to p(x).
So, according to the problem formulation of FlowPro, the
probability of the node x to belong on the community of node
s is analogous on its stored flow S(x).

III. FLOW PROPAGATION ALGORITHM
In this section, the proposed community finding algorithm

(FlowPro) is presented. FlowPro requires as input the initial
node (s ∈ V) that search for its community that has an initial
flow for propagation T (s) = |n(s)|. In each iteration of the
main process of FlowPro, the initial node propagates a flow
that is shared to its neighbors. Each node is able to store,
propagate to its neighbors and return a part of flow to the initial
node. Hereafter, we give a detailed description of FlowPro
algorithm that it comprises the following steps:

• In each iteration of the main process, the initial node s
propagates a flow that is shared to its neighbors according
to the edge weights. Each node that receives a flow stores
the half, and then send the half of the flow to its neighbors
only if the flow is greater than a threshold in order to
be able to terminate the process. So, when the graph
is undirected without edge weights, the flow is equally
distributed to the neighbors, since the edges are equivalent
and the node x supposes that the probability of each of the
neighbors to belong on C(s) is equal. Since s ∈ C(s),
the flow propagation is executed under the assumption
that the node s does not receive/store flow meaning that
we set W (x, s) = 0, ∀x ∈ V (see line 5 of Algorithm
1).
Let T (x) be the quantity of flow that the node x ∈ V is
going to transmit. The fact that each node stores the half
of receiving flow can be considered as a physical way to
reduce the flows and to terminate the process. So, this
process will be terminated when there does not exist any
flow to be send (see lines 8-18 of Algorithm 1).
This process is based on Equation 1 in the sense that the
nodes that are close to s will have high S(x). In addition,
it takes into account the graph structure in the sense that
a node x that have a lot of connections with nodes of
high stored flow, will receive also high quantity of flow.
Therefore, when two nodes have the same distance from
s, the node with more ”important” connections1 will have
higher stored flow. For example, in Fig. 1 the nodes x and
y have the same distance from s but S(x) > S(y), due to
the two connections of x with nodes a and b. So, the node
x belongs on C(s) with higher probability than node y.

• Based on S(.), in the next step of the method the
proposed method removes or add edges on s in order
to remove bridges and to decrease the d(x) for the
nodes that belong on the C(s). We sort the vector S in

1Connections with nodes that have high stored flow

4

descending order getting the node indices S ind (see line
19 of Algorithm 1). If there exist a neighbor v of node
s, that does not belong on the first |n(s)| nodes of S ind

(Sind(1 : |n(s)|)), then v is removed from the neighbors
of s, and the stored as well as the transmitted quantity of
v is transferred to node s, T (s) = T (s) + T (v) + S(v).
Since, with a high probability it holds that v does not be-
longs to the community of s (see lines 22-29 of Algorithm
1). Otherwise, we add the node u = Sind(|n(s)| + 1) to
the node s neighbors (see lines 35-38 of Algorithm 1). In
the next main step of the algorithm, we check if u is the
last point of Sind(1 : |n(s)|) and then we we remove it
for the neighbors of s (see lines 31-33 of Algorithm 1).
The goal of the removal and the extension of neighbors
of s is

– to decrease shortest paths between the nodes that
belong on the community of s and s in order to
be able to increase their stored flow in the next
iterations,

– to gradually keep the most of the flow to the nodes
of the community by removing bridges and

– to keep the |n(s)| balanced.
• The probability of a node x to belong to the community of

s is equal or less than by the average of corresponding
probabilities of node x neighbors (see Equation 2). So
based on this inequality, in the case that S(x) is greater
than E(S(n(x))), we set it to E(S(n(x))). The quantity
S(x) − E(S(n(x))) is added to T (s) (see lines 44-50
of Algorithm 1), so that in the next main step of the
algorithm .
This step will significant reduce the stored flow from
nodes that does not belong on the community. For ex-
ample, in Fig. 2, there exist a bridge (edge: s ∼ d) and
due to this step the reduction of S(d) will be high. Since,
the node d is only connected with almost fully connected
subgraph G2. Without this step, S(d) will be less but
close to S(a), S(b) and S(c).

• Finally, we sort the vector S in descending order and
we compute the differences between adjacent elements
of the sorted vector DS. Let K be the position of global
minimum2 ofDS. The community of node s is defined by
the firstK nodes with highest S(x). This trivial procedure
is implemented by the function getCluster (see line 51
of Algorithm 1).

• The main process ends when
– the community finding algorithm converges to a
solution (e.g. the last 10 iterations we receive the
same community) or

– the quantity T (s)∑
x∈V S(x) is lower than a threshold

meaning that S(.) has been converged (see line 57
of Algorithm 1).

2In order to avoid some special - non real solutions and to speed up the algo-
rithm we search for the global minima in the range [|n(s)|, |{x∈V :S(x)>0}|

2
].

input : V,W (i, j), i, j ∈ V, s ∈ V .
output: C
C = Cprev = {s}1
T (x) = S(x) = 0,∀x ∈ V2
T (s) = |n(s)|3
lastNode = doExit = iter = 04
W (x, s) = 0,∀x ∈ V5
repeat6

iter = iter + 17
repeat8

SET = {x ∈ V : T (x) > 0.001}9
foreach x ∈ SET do10

foreach y ∈ n(x) do11

ds = T (x)
|n(x)|12

S(y) = S(y) + 0.5 · ds13
T (y) = T (y) + 0.5 · ds14

end15
T (x) = 016

end17
until SET = ∅18
Sind = sort(S)19
SET = Sind(1 : |n(s)|)20
change = 021
foreach v ∈ n(s) do22

if v �∈ SET then23
W (s, v) = 024
T (s) = T (s) + S(v) + T (v)25
T (v) = V (v) = 026
change = 127

end28
end29
u = Sind(|n(s)|+ 1)30
if Sind(|n(s)|) = lastNode then31

W (s, lastNode) = 032
end33
lastNode = 034
if change = 0 then35

SET = SET ∪ u36
lastNode = u37

end38
foreach x ∈ SET do39

if x �∈ n(s) then40
W (s, x) = 141

end42
end43
SET = {x ∈ V : S(x) > E(S(n(x)))}44
Sprev = S45
foreach x ∈ SET do46

DS = S(x)− E(Sprev(n(x)))47
T (s) = T (s) +DS48
S(x) = Sprev(x)−DS49

end50
C = getCluster(S)∪ {s}51
if C = Cprev then52

doExit = doExit+ 153
else54

doExit = 055
end56

until doExit ≥ 10 ∨ T (s)∑
x∈V S(x)

< 0.0257

Algorithm 1: The proposed FlowPro algorithm.

5

IV. EXPERIMENTAL RESULTS

We have created a variety of benchmark graphs with known
community structure to test the accuracy of our algorithm.
Our benchmark graphs were generated randomly given the
following set of parameters: The number of nodes N of
the graph (1000, 5000, 10000), the number of communities
Comm of the graph (5, 10, 20, 40, 80), the (average) degree
of nodes degree (10, 20, 30, 40) and the ratio of local links
to node degree local/degree (0.55, 0.65, 0.75, 0.85). In total,
we created a number of 208 benchmark graphs. Notice that
even though the number of the nodes, the number of the
communities and the degree of the nodes are parameters of
the construction of the graph, the degree of each node as well
as the number of nodes in a single community varies based
on a pareto distribution. This enables us to create graphs of
community sizes and individual degrees varying up to an order
of magnitude. The same dataset has been also used in [14].

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

30

35

40

45

Iterations

Fl
ow

T(s)∑
x∈V S(x)

Fig. 3: An example of the variation of the stored flow and
T (s) during execution of the main process of FlowPro.

A demonstration of the propose method is given in 3,
that contains the benchmark graphs, related articles and an
executable of the proposed method.
We have used an accuracy-related metric found mostly

used in the literature in order to measure the performance
of community detection. The simple accuracy is defined as
follows: Let A be the estimated and Â the corresponding actual
community. The accuracy (acc) is given by the fraction of the
number of nodes that belong to the intersection of A ∩ Â
divided by the number of nodes that belongs to the union
A ∪ Â.

acc =
|A ∩ Â|
|A ∪ Â| (3)

It holds that acc ∈ [0, 1], the higher the accuracy the better
the results. When acc = 1 the community detection algorithm
gives perfect results.
Figs. 3 and 4 show an example of the evolution of the

FlowPro for the synthetic graph withN = 1000,Comm = 10,
degree = 20 and local/degree = 0.75. In Fig. 3 the variation

3http://www.csd.uoc.gr/∼cpanag/DEMOS/commDetection.htm

Graph FlowPro Lancichinetti
ca-GrQc (Undirected, 5.242 nodes, 28.980 edges) 0.264 0.996
ca-HepTh (Undirected, 9.877 nodes, 51.971 edges) 0.307 0.999
ego-Facebook (Undirected, 747 nodes, 30.025 edges) 0.135 0.239
Wiki-Vote (Directed, 7.115 nodes, 103.689 Edges) 0.678 0.717

TABLE I: The Coverage of FlowPro and Lancichinetti on real
world graphs.

of the stored flow (
∑

x∈V S(x)) and T (s) during the execution
of the main process is illustrated. It holds that

∑
x∈V S(x))

and T (s) is increasing and decreasing, respectively, during the
execution of the FlowPro. In Fig. 4 the FlowPro community
detection result (nodes that are located before the black line)
is depicted in the first, 31 and 61 iteration of the main process.
According to the getCluster procedure (see Section III), the
nodes are sorted by their stored flow (S). The nodes that really
belong on the community of s are plotted with blue spots while
the rest nodes are plotted with red circles. In this example
FlowPro is terminated since it converges to a solution. It holds
that the acc of the first, 31 and 61 and 81 iteration is 23.2%,
94.3%, 97.1% and 100%, respectively.
The performance of FlowPro and the Lancichinetti [5] are

compared on Benchmark graphs. Over all benchmark graphs,
it holds that the mean accuracy of FlowPro and Lancichinetti is
81.7% and 34.1%, respectively. Hereafter, we have performed
several experiments to show how the parameters of benchmark
graphs affect the accuracy of algorithms.

• If we ignore the cases of benchmark graphs that have N
equal to 10000, then the mean accuracy of FlowPro and
Lancichinetti is 82.1% and 35.1%, respectively.

• If we ignore the cases of benchmark graphs that have
degree equal to 10, then the mean accuracy of FlowPro
and Lancichinetti is 85.5% and 38.4%, respectively.

• If we ignore the cases of benchmark graphs that have
Comm equal to 5, then the mean accuracy of FlowPro
and Lancichinetti is 86.9% and 39.8%, respectively.

• If we ignore the cases of benchmark graphs that have
local/degree equal to 0.55, then the mean accuracy of
FlowPro and Lancichinetti is 87.9% and 37.8%, respec-
tively.

• If we ignore the cases of benchmark graphs that have
local/degree equal to 0.55 or degree equal to 10 or
Comm equal to 5, then the mean accuracy of FlowPro
and Lancichinetti is 94.2% and 48.5%, respectively.

According to these experiments it seems that the parameters
degree, Comm and local/degree affect the performance of
FlowPro and Lancichinetti since are related with the commu-
nity density, while the size of the graph doesn’t really affect
the results of the FlowPro.
We also conducted experiments on four real world graphs

of diverse sizes (see Table I). These graphs are obtained from
[19]. The conductance metric [10] is used for comparison
of results on real world graphs. These are different than
those used in the case of benchmark graphs, since the real
decomposition of graphs into communities is not known. We
have tested each algorithm on 50 different nodes yielding the

6

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

Node id

S
Comm
Out of Comm

(a) (1st iteration)

0 50 100 150 200 250
0

0.02

0.04

0.06

0.08

Node id

S

Comm
Out of Comm

(b) (31 iteration)

0 50 100 150 200 250
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Node id

S

Comm
Out of Comm

(c) (61 iteration)

Fig. 4: The FlowPro community detection result in the first, 31 and 61 iteration of the main process.

average conductance. The conductance of a cut is a metric that
compares the size of a cut and the number of edges in either of
the two subgraphs induced by that cut. The lower conductance
the better community detection. In Table I, we present the
results of running FlowPro and Lancichinetti graphs using con-
ductance metric. According to these results FlowPro clearly
outperforms Lancichinetti, since a lower conductance value is
better.

V. CONCLUSIONS AND FUTURE WORK

We presented a local community finding algorithm which is
based on a flow propagation method. The stored flow can be
used as a belief of a node to belong on the community answer-
ing on several questions like find the k-nearest neighbors of the
community of a node that are important on several applications
of social networks. The novelty of the proposed approach is
the fact that FlowPro is local, it detects a single community
and it does not require the knowledge of the entire graph as
most of the existing methods from literature. The proposed
algorithm has been tested on a large number of benchmark
graphs with known community structure comparing it with
Lancichinetti algorithm [5], proving its effectiveness against
another single community detection algorithm. We plan to
expand the algorithm, in order to enable the detection of also
non-overlapping and overlapping communities.

ACKNOWLEDGMENTS
This research has been partially co-financed by the Euro-

pean Union (European Social Fund - ESF) and Greek national
funds through the Operational Program “Education and Life-
long Learning” of the National Strategic Reference Framework
(NSRF) - Research Funding Programs: ARCHIMEDE III-TEI-
Crete-P2PCOORD.

REFERENCES
[1] G. W. Flake, S. Lawrence, C. L. Giles, and F. M. Coetzee, “Self-

organization and identification of web communities,” IEEE Computer,
vol. 35, pp. 66–71, March 2002.

[2] D. Katsaros, G. Pallis, K. Stamos, A. Vakali, A. Sidiropoulos, and
Y. Manolopoulos, “Cdns content outsourcing via generalized communi-
ties,” IEEE Transactions on Knowledge and Data Engineering, vol. 21,
pp. 137–151, 2009.

[3] M. E. J. Newman and M. Girvan, “Finding and evaluating community
structure in networks,” Physical Review E, vol. 69, no. 2, p. 026113,
Feb 2004.

[4] S. Papadopoulos, A. Skusa, A. Vakali, Y. Kompatsiaris, and N. Wagner,
“Bridge bounding: A local approach for efficient community discovery
in complex networks,” Tech. Rep. arXiv:0902.0871, Feb 2009.

[5] A. Lancichinetti, S. Fortunato, and J. Kertész, “Detecting the overlap-
ping and hierarchical community structure in complex networks,” New
Journal of Physics, vol. 11, no. 3, pp. 033 015+, March 2009.

[6] A. Lancichinetti and S. Fortunato, “Community detection algorithms: a
comparative analysis,” Physical Review E, vol. 80, no. 5 Pt 2, p. 056117,
Sep 2009.

[7] S. E. Schaeffer, “Graph clustering,” Computer Science Review, vol. 1,
no. 1, pp. 27 – 64, 2007.

[8] J. Chen and Y. Saad, “Dense subgraph extraction with application
to community detection,” IEEE Transactions on Knowledge and Data
Engineering, vol. 24, pp. 1216–1230, 2012.

[9] V. Blondel, J. Guillaume, R. Lambiotte, and E. Mech, “Fast unfolding
of communities in large networks,” J. Stat. Mech, p. P10008, 2008.

[10] H. Almeida, D. Guedes, W. Meira, and M. J. Zaki, “Is there a best
quality metric for graph clusters?” in Proceedings of the 2011 European
conference on Machine learning and knowledge discovery in databases
- Volume Part I, pp. 44–59.

[11] H. Papadakis, C. Panagiotakis, and P. Fragopoulou, “Local community
finding using synthetic coordinates,” in Future Information Technology.
Springer, 2011, pp. 9–15.

[12] H. Papadakis, P. Fragopoulou, and C. Panagiotakis, “Distributed com-
munity detection: Finding neighborhoods in a complex world using
synthetic coordinates,” in ISCC’11, 2011, pp. 1145–1150.

[13] H. Papadakis, C. Panagiotakis, and P. Fragopoulou, “Locating com-
munities on real dataset graphs using synthetic coordinates,” Parallel
Processing Letters, vol. 22, no. 01, 2012.

[14] ——, “A distributed algorithm for community detection in large graphs,”
in International Conference on Advances in Social Network Analysis and
Mining, 2013.

[15] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A decentralized
network coordinate system,” in Proceedings of the ACM SIGCOMM ’04
Conference, August 2004.

[16] C. Panagiotakis, H. Papadakis, E. Grinias, N. Komodakis,
P. Fragopoulou, and G. Tziritas, “Interactive image segmentation
based on synthetic graph coordinates,” Pattern Recognition, vol. 46,
no. 11, pp. 2940 – 2952, 2013.

[17] C. Panagiotakis and P. Fragopoulou, “Voting clustering and key points
selection,” in International Conference on Computer Analysis of Images
and Patterns, 2013.

[18] B. J. Frey and D. Dueck, “Clustering by passing messages between data
points,” science, vol. 315, no. 5814, pp. 972–976, 2007.

[19] “Stanford large network dataset collection.” [Online]. Available:
http://snap.stanford.edu/data/

