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Abstract A fundamental problemin networking and computing is community detec-
tion. Various applications like finding web communities, uncovering the structure of
social networks, or even analyzing a graph’s structure to uncover Internet attacks are
just some of the applications for which community detection isimportant. In this pa-
per, we propose an algorithm that finds the entire community structure of a network,
represented by an undirected, unweighted graph, based on local interactions between
neighboring nodes and on an unsupervised centralized clustering algorithm. The nov-
elty of the proposed approach is the fact that the algorithm is based on the use of
network coordinates computed by a distributed al gorithm. Experimental results and
comparisons with the Lancichinetti et al. method [14, 15] are presented for a variety
of benchmark graphs with known community structure, derived by varying a number
of graph parameters. Emphasisis given on benchmark graphs with significant varia-
tions in the size of their communities. Further experimental results are presented for
two real dataset graphs, namely the Enron, and the Epinions graphs, from SNAP, the
Stanford Large Network Dataset Collection. The experimental results demonstrate
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the high performance of our algorithm in terms of accuracy to detect communities,
and its computational efficiency.

Keywords Community detection, network coordinates, k-means.

1 Introduction

In recent years, the ubiquity of communication networks speeds up the devel opment
of Internet applications [26]. Furthermore, social networking [2] has been driving
a dramatic evolution due to the increasing use of Web 2.0 elements such as blogs,
twitter, Facebook, Linkedin, wikis, etc. One of the fundamental problemsin socia
networking with alot of potential applicationsisto detect effectively the communities
that are created by users’ interaction.

Severa attempts have been made to provide aformal definition for this generally
described “community detection” concept in networks. A strong community was de-
fined as a group of nodes for which each node of the community has more edges to
other nodes of the same community than to nodes outside the community [8]. Thisis
arelatively strict definition, in the sense that it does not allow for overlapping com-
munities and creates a hierarchical community structure since the entire graph can
be a community itself. A weak community, was later defined as a subgraph in which
the sum of all node degrees within the community is larger than the sum of all node
degrees toward the rest of the graph [12].

Variations also appear in the method used to identify communities: Most of the
algorithmsthat appear in the literature follow an iterative approach starting by charac-
terizing either the entire network, or each individual node as community, and splitting
[9,19] or merging [12], respectively. These methods produce a hierarchy of parti-
tions. Thereis an entire hierarchy of communities, because communities are nested:
small communities compose larger ones, which in turn are put together to form even
larger ones. By merging or splitting communities one can build a hierarchical tree of
community partitions called dendrogram. The modularity criterion defined in [9] is
a measure of the quality of a partition, and can be used to identify a single optimal
partition, i.e. the one corresponding to the largest modularity value.

Apart from the variations in the definitions and the method employed to identify
communities, there are many variation in the final desired solution. As an example,
several researcher aim to find the entire hierarchical community dendrogram [9, 19]
while others wish to identify only the optimal community partition [8]. More re-
cently used approaches aim to identify the community surrounding one or more seed
nodes [21]. Some researchers aim at discovering distinct (non-overlapping) commu-
nities, while others allow for overlaps [15]. The variations to the problem are non-
exhaustive.

Algorithms that follow a global approach, not only require the entire network in
order to function, but they often require the entire network to be manipulated at each
iteration [9,19]. However, real world networks, like for example Web graphs, so-
cia networks, communication and autonomous system graphs, peer-to-peer systems,
blogs, collaborative networks, citation graphs, database relations, etc, count millions
of nodes whose manipulation using global algorithms is prohibitive by any means.



Locating Communities on Graphs with variations in Community Sizes 3

Recently, the emerging and demanding need to analyze this type of networks led the
research towards the devel opment of local community detection algorithms [21, 14].
These algorithms are based exclusively on local interaction between pairs of neigh-
boring nodesfor the identification of the community structure, thus global knowledge
of the network is not required.

In this paper, we propose an algorithm to identify the entire community struc-
ture of a network based on interactions between neighboring nodes, which isinspired
by the Vivaldi synthetic network coordinate algorithm [3] and the spring relaxation
metaphor. Our algorithm is based on the idea that by providing our own, appropri-
ate, definition of distance between nodes, we can use Vivaldi’s spring relaxation to
position the nodes in space in such a way as to reflect community membership, i.e.
nodes in the same community will be placed closer in space than nodes of differ-
ent communities. In the second phase of the algorithm, K-means is used to identify
the natural communities formed in space. Extensive experimental results on several
benchmark graphs with known community structure indicate that our algorithm is
highly accurate in identifying community membership of nodes and computationally
efficient. Thefirst part of the experimental phase focuses on graphswith communities
of the same size, while the second phase deals with graphs that contain communities
with significant variations in size. Additional experimental results are provided for
two real dataset graphs, the Enron and the Epinions graphs, from SNAP, the Stanford
Large Network Dataset Collection [24].

The remaining of the paper is organized as follows. Section 2 reviews some of
the most important approaches to community detection found in the literature. Sec-
tion 3 briefly presents the main idea behind the Vivaldi network coordinate system
which constitutes the cornerstone of our community detection algorithm. The pro-
posed community detection algorithmis presented and analyzed in Section 4. Section
5 describes the experimental framework and comparison results with another known
algorithm on a number of benchmark and real dataset graphs. Finally, we conclude
in Section 6 with some directions for further research.

2 Related Work

Below we review some of the known methods for community detection and give in-
sight on the approach they follow. For the interested reader, two comprehensive and
relatively recent surveys covering the latest developmentsin the field can be foundin
[14, 23]. Furthermore, a comparative anaysis of some known algorithmsis presented
in [16]. While the first algorithms for the problem used the agglomerative approach
trying to derive an optima community partition by merging or splitting other com-
munities, recent efforts concentrate on the derivation of agorithms based on local
interaction between nodes. A community surrounding a seed node is identified by
progressively adding nodes and expanding a small community. This is certainly a
more flexible approach to the problem that allows adaptation in distributed environ-
ments.

One of the most known community finding a gorithms was developed by Gir-
van and Newman [9,19]. By gradually removing bridge edges belonging to many
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shortest paths between nodes, the graph is split and its hierarchical community struc-
ture is revealed. The algorithm is computationally intensive because following the
removal of an edge, the shortest paths between all pairs of nodes have to be recalcu-
lated. However, it reveal sthe entire hierarchical community dendrogram of the graph.
An important element of the algorithm is the modularity which is used to assess the
quality of the community partition resulting in each iteration, and as a termination
criterion. The modularity essentialy indicates the extent to which a given commu-
nity partition is characterized by high number of intra-community edges compared to
inter-community ones. In adifferent approach, the algorithm presented in [12], named
CiBC, adopts the inverse approach, initially assuming each node as a different com-
munity, and iteratively merging closely connected communities. This algorithm is
less intensive computationally since it starts by manipulating individual nodes rather
than the entire graph.

The authors of [21] introduce a local methodology for community detection,
named Bridge Bounding. The algorithm can identify an individual community start-
ing its detection from a seed node and progressively expanding around it. Commu-
nity expansion stops at edges characterized as bridges. An edgeisabridgeif its edge
clustering coefficient exceeds a predefined threshold. The method is local, has low
complexity and allows the flexibility to detect individual communities, albeit |ess ac-
curately. The entire community structure of a network can be uncovered starting the
algorithms at various unassigned seed nodes, till all nodes have been assigned to a
community.

An exceptionaly interesting method for community detection appears in [15].
Although most previous approachesidentify distinct (non-overlapping) communities,
this algorithm is developed based on the observation that network communities may
have overlaps, and, thus, algorithms should alow for the identification of overlap-
ping communities. Based on this principle, alocal algorithm is devised developing a
community from a starting node and expanding around it based on a fitness measure.
Thisfitness function depends on the number of inter- and intra-community edges and
atunable parameter .. Starting at a node, at each iteration, the community is either
expanded by a neighboring node that increases the community fitness, or shrinks by
omitting a previously included node, if this action results in higher fitness for the re-
sulting community. The algorithm stops when the insertion of any neighboring node
would lower the fitness of the community. Thisalgorithmislocal, and ableto identify
individual communities. The entire overlapping and hierarchical structure of complex
networks can be found by initiating the algorithm at various unassigned nodes. The
algorithm has low complexity and is highly flexible and efficient in detecting com-
munities.

Other community finding methods of interest involve [8] in which the problem
is regarded as a maximum flow problem and edges of maximum flow are identified
to separate communities from the rest of the graph. In cligue percolation [6,20] a
complete subgraph of k nodes (k-clique) is rolled over the network through other
cliques with k — 1 common nodes. This way a set of nodes can be reached, which is
identified as acommunity. A method based on voltage drops across networks and the
physics kirchhoff equations is presented in [27]. A mathematical Markov stochastic
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flow formulation method known as MCL is presented [25], and alocal community
finding method in described in [1].

3 Synthetic Network coordinates

Network coordinate systems were designed to predict latencies between network
nodes, without the need for explicit measurements using probe queries. These algo-
rithms assign synthetic coordinates to hosts, so that the distance between two hosts
coordinates provides an accurate latency prediction between them. This technique
provides to applications the ability to predict round trip time with less measurement
overhead than probing. Vivaldi is a fully decentralized, light-weight, adaptive net-
work coordinate algorithm that predicts Internet latencieswith low error. Vivaldi uses
the Euclidian coordinate system (in n-dimensional space, where nis aparameter) and
the associated distance function. Conceptually, Vivaldi simulates a network of phys-
ical springs, placing imaginary springs between pairs of network hosts.

Let G = (V, E) denote the given graph comprising aset V of nodes together with
aset E of edges. Each node x € V participating in Vivaldi maintainsits own coordi-
nates p(x) € R" (the position of node x that is a point in the n-dimensional space).
Initially, al node coordinates are set at the origin. Periodically, each node commu-
nicates with another node (selected among a small set of nodes known to it). Each
time a node communicates with another node, it measures its distance and learns that
node’s coordinates. Subsequently, the node alows itself to be moved a little by the
corresponding imaginary spring connecting them.

When Vivaldi converges, any two nodes Euclidian distance will match their ac-
tual distance, even though those nodes may never had any communication. When
node x with coordinates p(x) learns about node y with coordinates p(y) and mea-
sured distance digt, it updates its coordinates using the following update rule:

P(X) = p(x) + - (dist — [|p(x) — p(y)|]) - u(p(x) - P(y)) @

where ||.|| denotes the Euclidean norm operation and u(p(x) — p(y)) denotes the unit
vector that has the same direction with p(x) — p(y). Finally, § can be viewed as the
fraction of the way the node is alowed to move towards the perfect position for the
current sample, and is updated during the process. The estimation of 6 isanalytically
described in Section 2.5 of [3]. Equation (1) is identical to the individual forces of
a spring from a straightforward application of Hook’s law. Unlike other centralized
network coordinate approaches, in Vivaldi each node only maintains knowledgefor a
handful of other nodes. Each node computes and continuously adjusts its coordinates
based on its measured distance to a handful of other nodes.

4 L ocal community finding

The proposed local community finding algorithm comprises the following steps:

— The position estimation algorithm, which is a distributed algorithm inspired by
Vivaldi [3].
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— The community detection algorithm using K-means clustering.
— Thefinding of the number of communities.

Hereafter, we describe the main steps of the algorithm.

4.1 The position estimation algorithm

In the core of our proposal lies the spring metaphor which inspired the Vivaldi a-
gorithm. As we mentioned, Vivaldi uses spring relaxation to position the nodesin a
virtual space (the n-dimensional Euclidean space), so as the Euclidean distance of
any two nodes approximates the actual distance between those nodes. In the original
application of Vivaldi, the actual distances were the latencies between Internet hosts.
Our agorithm is based on the idea that by providing to the a gorithm with our own,
appropriate, definition of distance between nodes, we can use spring relaxation to
position the nodes in the n-dimensional space in such a manner as to reflect commu-
nity membership, i.e. nodes in the same community will be placed closer in space
than nodes of different communities. In other words nodes belonging to the same
community will form natural clustersin space.

Let C(x), C(y) denote the communities’ sets of two nodes x,y € V, respectively,
of agiven graph. Since two nodes either belong to the same community (C(x) =C(y))
or not, ideally we should define the initial distance between two nodesx and y as:

1 C(x=C(y)
009 = { 100, o) 2l @

Given this definition of distance, we can employ Vivaldi’'s spring relaxation to posi-
tion the nodes appropriately in the n-dimensional Euclidian space (R "). As one can
expect, when Vivaldi converges nodes of the same community will be close-by in
space, while nodes of different communities will be away from each other. Thisis
the reason for the dual nature of the distance function in equation (2), otherwise all

nodes, regardless of community membership would gravitate to the same point in
space.

Vivaldi requires each nodeto select aset of other nodesto probe. Each node x cal-
culates a “local” set L(x) containing nodes of the same community, and a “foreign”
set F(x) containing nodes of different communities. The size of the local set as well
as the size of the foreign set of a node equals the degree of the node. However, the
perfect construction of these sets depends on the apriori knowledge of node commu-
nity membership, which isthe actua problem we aretrying to solve. Even thoughwe
do not know the community each node belongsto, there are two facts we can exploit
to make Vivaldi work without this apriori knowledge:

— Thefirst fact is based on the definition of a community, according to which most
of a node’s neighbors belong to the same community as the node itself. This
means that, if we consider all of anode's neighborsas “local” links belonging to
the same community as the node itself, this assumption will be, most of the time,
correct, which in turn means that even though some times the node may moveto
the wrong direction, most of the time it will move to the right direction and thus,
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will eventually acquire an appropriate position in space. Thus, we let thelocal set
L(x) of anodex € V, beits“neighbor set” (L(x) = {y € V : X~ y}). The distance
from node x to nodesin L(x) is set to 1 according to Equation (2).

— The second fact we exploit concerns the “foreign” set. Since we consider all of a
node’s links as local links, we need to find some nodes which most likely do not
belong to the same community as the node itself, and therefor will be considered
as foreign nodes. This can simply be done by randomly selecting a small number
of nodes from the entire graph. Assuming that the number of communities in
the graph is at least three, the majority of the nodes in this set will belong to a
different community than the node itself. These nodes will comprise the “foreign
set” F(x) of nodex € V: F(x) C {y €V : x« y}. Thedistance from node x to the
nodesin F(x) is set to 100 according to Equation (2).

The algorithm proceeds as follows: Initially each node is placed at a random po-
sition in R". Iteratively, each node x € V randomly selects anodey, either from L(x)
or F(x) (see Algorithm 1). Having defined the two sets L (x) and F (x) for each node x
and randomly selecting, at each iteration, anodey either from set L(x) or from F(x),
we usethe Vivaldi algorithm with parametersthe current position of nodex (p(x)), the
current position of nodey (p(y)) and their corresponding distance d(x, y) to acquirea
new position estimate for node x after Vivaldi’s spring relaxation. Therefore, first we
randomly select the set L(x) or F(x) from which y will be sampled using the proce-
dure randomSel ection (see line 1 of Algorithm 1). The procedure randomSel ection
gets as input a set and randomly selects a sample from this set. Next, we randomly
select a node from the selected set (L(x) or F(x)) (see lines 2-6 of Algorithm 1).
Finally, the Vivaldi algorithm is executed (see line 7 of the Algorithm 1).

Algorithm 1: Local community finding
input :xeV,p(.),d(.,.)
r =randomSelection({0, 1})
if r=0then
y = randomSel ection(L(x))
else
y = randomSel ection(F (x))
end
p(x) = Vivaldi(p(x), p(y),d(x,y))

~No a b wdN R

The iterations stop when the positions of al nodes have converged. Each node
continues this process until it deems its position to have stabilized as much as pos-
sible. Thisis done by maintaining a history of the most recent changes in the node’s
position, in the form of distances. When the history size reaches 110 entries, 5% of
the highest and lowest history values are discarded and a stability metric is calcu-
lated. Then the 50 oldest history entries are discarded. A new value of the stability
metric is calculated when the history size reachesagain 110 entries. If the value of the
stability metric remains below a certain threshold for 20 consecutive iterations of the
algorithm, the node considers its position stable and stops updating it. The stability
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Fig. 1 Snapshots of the execution of the first phase of our algorithm for a graph with known community
structure: () initialization, (b) after 50 iterations, (c) after 150 iterations, (d) after 400 iterations.

metric is calculated using the standard deviation of the history values, divided by the
average value. The threshold value used is 1.3.

Fig. 1 shows a small time-line of the execution of our algorithm on a graph with
1024 nodes, degree 20, and a known community structure comprising four commu-
nities. We have used different colors for the nodes of each different community. Ini-
tially, nodes were randomly placed in %2. Aswe can see, in the beginning all colors
are dispersed on the entire space. As the algorithm progresses, we see that nodes of
the same color, belonging to the same community, gradually gravitate to the same
area, forming distinct clustersin space.

4.2 Community detection using K-means clustering

Having estimated a synthetic coordinate (n-dimensional position) for each node of
the graph, we can use a clustering algorithm in order to identify the communities,
since the nodes that belong to the same community should have been placed in prox-
imity in R". To achieve this we use the K-means clustering algorithm [18,11], one
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of the simplest unsupervised learning algorithms that solves the well known cluster-
ing problem [7,28,29], under the assumption that the number of clusters (number of
communities) K is provided. The K-means agorithm has been successfully used in
many clustering applicationsin networks[4,17]. In our case, K-means takes as input
the positions of nodes produced by the Vivaldi agorithm and outputs a community
membership for each nodes. In the remaining of the paper the terms community and
cluster are used interchangeably.

K-means is a centralized clustering algorithm. However, its linear computation
cost O(KNn), where N denotes the number of graph nodes, makes it a good can-
didate even for large graphs. The main idea of K-means is to define K centroids
C e R"i € {1,...,K}, one for each cluster S,i € {1,...,K}. These centroids will
eventually be placed at the centers of the natura clusters. The goal of K-means is
to minimize the sum, over al clusters, of the within-cluster sums of node-to-cluster-
centroid distances. Initially, these centroids can be randomly set. However, for our
datawe know that the clusters are far apart from each other dueto Vivaldi and Equa-
tion (2). Therefore, we get better results when we take this property into account,
selecting the initial centroidsto be as far apart from each other as possible. This se-
lection is given by the KKZ algorithm [13] in O(KNn) time. According to the KKZ
method, the first centroid is given as the data point with maximum norm, and the
second centroid is the point farthest from the first centroid, the third centroid is the
point farthest from its closest existing centroid and so on.

In each iteration of K-means the following tasks are performed, each nodeis as-
signed to the cluster with the closest centroid: subsequently the means of the resulting
clusters are calculated and become the new cluster centroids.

— each node is assigned to the cluster with the closest centroid (according to the
Euclidean distance, see Equation 3):

— subsequently the means of the resulting clusters are calculated and become the
new cluster centroids (see Equation 4).

Thefinal clustering is provided by assigning each node to the cluster with the closest
centroid.

S ={xe V|G- pX| <ICj—p(X|,Vj €{1,....K}} ©)
G- =Y pX) (4)
B |S|xes 7

where |S | denotes the number of nodes of cluster S;.

It makes sense to apply K-means clustering to our data, since according to Vi-
valdi the nodes of the same cluster (community) are placed close to each other in the
Euclidean space while nodes of different communities place themselves away from
each other. Moreover, the Euclidean space that is used by K-means to compute the
clusters has been a so used by Vivaldi to produce the position estimates of the nodes.
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4.3 Finding of the number of Communities

The selection of the number of communities could be done by the user to fit his’her
specific preferencesand information needs. However, it iscrucial to develop amethod
that automatically estimates the most appropriate number of communities. This sec-
tion describes a method for the automatic calculation of the number of communities.

Having estimated a synthetic coordinate (position) for each node of the graph,
we execute the proposed K-means clustering algorithm [18] described in the previ-
ous section for different numbers of communities getting different clustering results.
Next, we use the criterion described in [22] in order to find the most appropriate
number of communities. This criterion is based on the compactness of clusters pro-
duced by K-means. Using the distance of each node to its respective cluster center,
the compactness of each cluster is determined. According to this criterion, we select
the number of communities that minimizes the validity (validity) measure. Validity
is defined as the ration of intra-cluster (intra) to inter-cluster (inter) distance:

. 1%
'””aZNZZHD(X)—CiH )
i=1xe§
inter = min; jeq1 kini<j (G —Cjl|) (6)
. intra
validity = o (7)

— Intra-cluster distance is defined as the average of the distances between each node
and its cluster center.

— Inter-cluster distance is given by the minimum of distances between cluster cen-
ters.

Apparently, we wish to minimize the intra-cluster distance and to maximize inter-
cluster distance. Therefore, we select the clustering which gives aminimum valuefor
the validity measure.

In order to measure the performance of the automatic selection of the number of
communities, for each benchmark graph, we have executed the method as described
inthe“Experimental results’ section of [10], searching for the most appropriate num-
ber of communities. The experimental results show that the probability of selecting
the correct number of communities is related to the accuracy of the community de-
tection agorithm. It holds that when the accuracy is greater than 90%, then the prob-
ability of selecting the correct number of communities is 87%. When the accuracy
is between 80% and 90%, then the probability of selecting the correct number of
communities drops to 51%. The algorithm fails when the accuracy is less than 65%.

5 Experimental results

In this section we present extensive experimental resultson several benchmark graphs
with known community structure which demonstrate the accuracy in identifying com-
munity membership and the computational efficiency of our agorithm. Benchmark
graphs are essential for the testing of community detection algorithms since there is
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an apriori knowledge of the structure of the graph and thus one is able to accurately
ascertain the accuracy of the algorithm. Since there is no consensus on the defini-
tion of a community, using a real-world graph makes it more difficult to assess the
accuracy of acommunity partition.

The first part of the experimental phase focuses on graphs with communities of
the same size, while the second phase deals with graphs that contain communities
with significant variations in size. Our benchmark graphs were generated randomly
given the following set of parameters:

— The number of nodesN of the graph.

— The number of communities Comm of the graph.

— Theratio of locd links (links to nodes of the same community, since the commu-
nity structure of benchmark graphsis known) to node degree |l ocal /degree.

— The degree of nodes degree.

Our algorithm is experimentally compared to an efficient algorithm found in the
literature namely the Lancichinetti et al. algorithmLancichinetti2 described in the
following subsection.

5.1 The Lancichinetti et al. algorithm

An interesting method for community detection appears in [15]. A local agorithm
is devised developing a community from a seed node and expanding around it. A
community is identified as a subgraph that has a certain fitness. The authors provide
an appropriate fitness function, whose calculation is based on the number of inter-
and intra-community edges and a tunable parameter a. Starting at a node, at each
iteration, the community is either expanded by a neighboring node that increases
the community fitness, or shrinks by omitting a node if this action results in higher
fitness for the community. The a gorithm stops when the insertion of any neighboring
node would lower the fithess of the community. This algorithm is local, and able to
identify individual communities. The entire overlapping and hierarchical structure of
anetwork can a'so be found.
For acommunity S of the graph, thefitness fsis calculated as follows:

K&

(K +KSi)* ®)

fs=

where K and K$, refer to the total inter-community and intra-community edges of
community Srespectively, and o is a positive real-valued parameter which controls
the size of the community. A larger value of o resultsto larger communities. A com-
mon valueused isa = 1.

The process of revealing the natural community of node is described bel ow:

1. aloopis performed over all neighboring nodes of Snot included in S
2. the neighbor with the largest fitnessis added to S, yielding alarger subgraph S’;
3. thefitness of each node of S' is recalculated;
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4, if anode turns out to have negative fitness, it is removed from S', yielding a new
subgraph S”;
5. if (4) occurs, repeat from (3), otherwise repeat from (1) for subgraph S”.

The process terminates when there is no other candidate node with positive fitness
for inclusion in the community.

In order to revea the entire community structure of a network, each node should
belong to at least one community. To achieve this goal we apply the process summa-
rized below:

Select at random node A.

Discover the natural community of node A.

Randomly select a node B that has not been assigned to a community.

Discover the natural community of B, by exploring al the candidate nodes re-
gardless of whether they belong to other communities (allow for overlaps).
Repeat from step (3).

PP

o

5.2 Benchmark graphs with communities of equal size

We used the parameters values shown in Table 1 to create a set of benchmark graphs
with communities of equal size.

Table1l Benchmark graph parameters (for graph with equal size communities).

N: 1024, 4096

Comm: 2,4,8,16,32,64
local/degree: | 0.55, 0.65, 0.75, 0.85
degree: 5, 10, 20, 30, 40

The total number of nodes is divided among the various communities and then
the wiring of the links is performed. The local links are selected randomly among
the nodes of the same community (excluding, of course, nodes which are already
neighbors, nodes with complete neighbor set and the connecting node itself). The
foreign links are selected randomly among all nodes in the graph, excluding nodes
in the same community as the connecting node. Concerning the dimensions of the
Euclidian space, we have used R%° getting high performance results. Lower values
yielded worse results while higher values did not achieve better results.

In many cases, the combination of agiven node degreewith alocal to degreeratio
produced area (float) number of local and foreign links. In these cases, the decimal
value is thought of as the probability of a node having an additional link of the same
type. For instance, avalue of 4.3 for thelocal links meansthat 70% of the nodes have
4 |ocal links and 30% of the nodes have 5 local links. These parametersresulted in a
total number of 200 graphs, and corresponding experiments, which we present bel ow.
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5.3 Benchmark graphs with variable community sizes

We generated several synthetic benchmark graphs, with communitiesof variablesizes
to test and compare our agorithm. In order to make graph creation more challeng-
ing, we used a power-law distribution to generate both the sizes of the communities
in each graph, as well as the degree of each node of the graph. Namely, we used a
Pareto distribution. For the sizes of the communities, we used a discrete Pareto dis-
tribution with alow value of one-third of the average community size (i.e. Number
of nodes/ Number of communities) and a high value equal to the size of the entire
graph. We then calculated an appropriate slope value so as the mean value of the
distribution correspondsto the average community size. Similarly, for the generation
of the various node degree values of a graph, we used a discrete Pareto distribution
with alow value equal to one-third of the average degree and a high value of three
times the average degree. Again, the slope value was cal culated in order for the mean
to equal the average total degree value. Findly, all intra- and inter- community links
were created in arandom fashion. For instance, an intra-community link was created
by uniformly selecting two nodes of the same community (given that neither node
had already reached its respective short links number).

Table 2 Benchmark graph parameters (for graphs with variable size communities).

N: 1000, 5000
Comm: 5, 10, 20, 40, 80
local/degree: 0.55, 0.65, 0.75, 0.85

degree (average): | 10, 20, 40, 80

The parameters used to create those graphs can be seen in Table 2. Note that not
all parameter combinations make sense and thus some were omitted. For instance,
one cannot create a graph of 1000 nodes with 80 communities (i.e. 12.5 nodes per
community on average) and require 20 intra-community links per node.

5.4 Community detection results

In this subsection, the experimental results of the proposed algorithm are presented
on the benchmark graphs. In addition, we compare the accuracy of the proposed
scheme to an efficient distributed community detection algorithm found in the litera-
ture, namely the Lancichinetti algorithm [15].

In order to measure the performance of the community detection agorithms,
the measure of accuracy has been used. Let Sj,i € {1,...,Comm} be the estimated
and § ,i €{1,...,Comm} the corresponding actual communities. The accuracy acc is
given by the average (over all communities) of the number of nodes that belong to
the igtersection of SN é divided by the number of nodes that belongs to the union
SUS. A

Comm |S N S|

Comm 4~ |SUS§| ©

acc =
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It holds that acc € [0, 1], the higher the accuracy the better the results. When acc = 1
the community detection algorithm gives perfect results. In our experimental results,
we used a modified accuracy metric accy, based on the accuracy measured in the
experiment acc and the accuracy obtained by randomly selecting nodes (that is ﬁn)

in the community:
1
acc—
acCy = ———<omn (10)
~ Comm
This means that the modified accuracy of an experiment with the same initial accu-
racy as a random selection of nodes for each community is zero. The density which

is defined in Equation 11, measures how dense a community is.

|V|-degree  local

density = VIV[=1) X 1 (11
Comm
Proposed
1 Lancichinetti
1
0.9
1 0.9
0.8
1 0.8
0.8 0.7
0.8 0.7
0.6
0.6 06 0.6
0.4 05 04 05
0.2 0.4 02 0.4
0.3
0 0 0.3
0.9 02 09 0.2
0.8 0.8
07 o 0.1 07 0 0.1
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local/degree 0.5 Comm local/degree 0.5 Comm
€Y (b)

Fig. 2 The mean value of accuracy under different ratios of local /degree and Comm for (a) the proposed
and (b) Lancichinetti algorithms.

We have performed experiments on all benchmark graphs using several values
of the o parameter of the Lancichinetti algorithm. In the results, we have used the
optimal value for our test graphs (i.e. the value of « that provided the best results). It
should be noted however, that the Lancichinetti algorithm does not provide away to
calculate this value without a priori knowledge of the correct results.

Since we could not present the experimenta results against all four parameter
values of a single experiment, the accuracy is plotted against one or two of those
parameters, averaging the actual accuracy values with the same pair of parameter
values. Thelow dispersion value among each averaged set of valuesindicatesthat the
selected pair of parametersisthe onethat mostly affectsthe agorithm’s performance.
These pairs are the “local/degree” and the “Comm” parameters for our algorithm
and“local/degree” and the graph “density” for the Lancichinetti algorithm.

Figs. 2(a) and 2(b) illustrate the mean value of accuracy under different values
of local to degree (local /degree) ratio and number of communities (Comm) for the
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Fig. 3 The mean value of accuracy under different ratios of local /degree and densities for (a) the pro-
posed and (b) Lancichinetti algorithms.

Proposed Lancichinetti

80 0.8 80

40 60
0.6 20 0 0.6 20 0

local/degree Comm local/degree Comm

@ (b)

Fig. 4 The mean value of accuracy under different ratios of local /degree and Comm for (a) the proposed
and (b) Lancichinetti algorithms.

proposed and Lancichinetti algorithmsin graphs with communities of equal size, re-
spectively. Figs. 3(a) and 3(b) illustrate the mean value of accuracy under different
values of local to degree (local /degree) ratio and density for the proposed and Lan-
cichinetti algorithms, respectively. Figs. 4(a) and 4(b) illustrate the mean value of
accuracy under different values of local to degree (Iocal /degree) ratio and number of
communities (Comm) for the proposed and Lancichinetti algorithms in graphs with
variable community sizes, respectively. Finally, Figs. 5(a) and 5(b) illustrate the mean
value of accuracy under different values of local to degree (local /degree) ratio and
density for the proposed and Lancichinetti algorithmsin graphs with variable com-
munity sizes, respectively.

According to these figures, it holds that the proposed method outperforms the
Lancichinetti, since the accuracy of the proposed method is higher than the cor-
responding accuracy of Lancichinetti under any case. Over all 200 experiments of
graphs with communities of equal size, our algorithm achieved an average accuracy
of 72% whereas the Lancichinetti’s algorithm respective value was 58%. Over all 128
graphswith variable community sizes, our algorithm achieved an average accuracy of
85.9% whereas the Lancichinetti’s algorithm respective value was 72.03%. The rea-
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Fig. 5 The mean value of accuracy under different ratios of local /degree and densities for (a) the pro-
posed and (b) Lancichinetti algorithms.

son for thisis that in cases of less dense communities (large community population
and/or small degree) it is more difficult for Lancichinetti to locate triangles of nodes
(circles of three edges), the existence of which facilitate its operation. Our agorithm
is based on the cooperation of all nodes in the community (pulling each other to the
right direction) and thusis not depended on the existence of triangles.

Fig. 6(a) illustrates the computation cost (in seconds) under different degreesfor
the proposed and Lancichinetti algorithms. Our algorithm’s running time only de-
pends on the size of the graph. This is because the number of updates per node is
irrelevant to the size of the foreign and local sets. Larger foreign and local sets sim-
ply mean that the algorithm has more nodes to choose from when updating. Finaly,
on average, our algorithm requires 6.5 seconds to find all communities, while Lanci-
chinetti’s algorithm requires 41 seconds. Fig. 6(b) displays a different success metric.
Given amodified accuracy threshold, we show the ratio of al 200 experiments with
modified accuracy higher than the threshold. The difference between the two meth-
ods is more apparent in more difficult test cases (where obtaining a high accuracy
value is more difficult) where Lancichinetti fails more often.

Fig. 6(c) illustrates the modified accuracy in each of the experiments sorted in
ascending order by the Lancichinetti algorithm modified accuracy in graphs with
variable community sizes. Similarly to Fig. 6(b), Fig. 6(d) displays the ratio of all
128 graphs with variable community sizes with modified accuracy higher than the
threshold. In both Figures, it is evident that the proposed method clearly outperforms
Lancichinetti’s algorithm.

5.5 Experiments on real dataset graphs

In this section we try to assess the effectiveness of our algorithm, as opposed to Lan-
cichinetti’s et al. [15] trying to identify communities in two graphs based on real
datasets from the Stanford Large Network Dataset Collection. Thefirst oneisacom-
munications network graph, namely Enron which counts 36,692 nodes and 367,662
edges, and represents the email communications network of Enron. The second one,
named Epinions, is a socia network graph which counts 75,879 nodes and 508,837
edges and represents the Who-trusts-whom network of Epinions.com.
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Fig. 6 (a) Time required for the detection of all communities, in graphs of 4096 nodes and all degree
values in graphs with communities of equal size. (b) Percentage of experiments with modified accuracy
over a threshold in graphs with communities of equal size. (c) The modified accuracy in each of the
experiments sorted in ascending order by the Lancichinetti algorithm modified accuracy in graphs with
variable community sizes. (d) Percentage of experiments with modified accuracy over athreshold in graphs
with variable community sizes.

Themain conclusion drawn from Fig 7 isthefact that our algorithm locates denser
communitiesthan Lancichinetti’set a. sincethe short/total averagevaluesare consis-
tently higher for our agorithm. In addition, one can see that although the density of
the communities does seem to vary, there is no apparent correlation between density
and community size.

From Fig 8, we deduce that our algorithm appearsto locate communities of some-
what larger sizes. In general, thisis a positive sign in an agorithm’s behavior since it
isausua problem in the operation of community detection algorithmsto degenerate
into locating very small communities of one or two nodes.

6 Conclusions

We presented a community finding algorithm which is based on the Vivaldi network
coordinate system. The proposed algorithm has been tested on a large humber of
benchmark graphs with known community structure, and two real dataset graphs,
comparing it with the agorithm found in [15] and proving its effectiveness and
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Fig. 7 Enron graph: (a),(b) Short/total average per community size for Lancichinetti’s and the proposed
agorithm, respectively. (c),(d) Community size distribution for Lancichinetti’s and the proposed al gorithm,
respectively.

computationa cost. An improvement would be to intelligently recalculate the local
and foreign sets during the execution of the algorithm, in light of the partial results
achieved, fact that would allow the algorithm to converge earlier. Furthermore, an
interesting direction would be to use the distributed K-means [5] in order to have a
fully distributed system. It would be beneficia to test the algorithm on more real-
world graphs such as web graphs, socia network graphs and more.
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